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Abstract: In this paper, we propose a new type of derivative called a pattern 
derivative. In the simple case of an asset that moves up u or down d in value, a 
pattern is a sequence of {u, d} movements that may occur before expiration. 
We provide general pricing formulas that rely on a brute force approach as well 
as efficient valuation algorithms based on recursive formulas for the probability 
of patterns to occur. We generalise our results to exclusive, inclusive, and 
multi-pattern options. Finally, we discuss the possible benefits of this type of 
options. 
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1 Introduction 

In this paper, we propose a new type of path-dependent derivative, which we call pattern 
derivatives. Pattern derivatives are a family of derivatives characterised by the fact that 
payouts are dependent upon patterns of sequential, discrete events occurring or failing to 
occur during the life of the contract. 
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By a pattern, we mean a string of symbols from an arbitrary but finite alphabet. For 
example, bac is a pattern from the English alphabet and it occurs in the words ‘abacus’ 
and ‘backward’. Although we will try to be as general as possible, our numerical 
examples will focus on an alphabet of two symbols {u, d} where u may represent a 
positive daily return and d a negative daily return for an asset (for example a stock, a 
portfolio, or an index). Patterns such as dddd, uuuu, ududud and ddudu will represent 
patterns of periodic returns on an underlying asset. Most of our results are general and not 
dependent on this choice of an alphabet. 

One particular kind of pattern derivative is a very simple digital option which triggers 
a one time payout to the holder of the option in the event that the underlying goes down 
for four consecutive market days (pattern dddd) during the life of the contract. Supposing 
that there are thirty market days until the expiry of the contract, the underlying may have 
the following description between now and expiration: 

uudduddududuuddd duuudududuudud  

in this case, the bold d indicates the point at which the payout is triggered. The payout 
can be made at any point after the triggering pattern occurs. We can assume, as for a 
European style option, that the payout is made at the end of the contract. 

Patterns can be used instead of a barrier, in any type of barrier option. Pattern 
derivatives, however, may offer some protection to option writers where barrier options 
fail. For instance, many down-side barriers on US options were hit during the flash-crash 
of May 2010, though there was no persistence under these barriers. One could instead 
write in the contract that these barriers must be breached at close. But should such a crash 
happen at the end-of-day, where we assume that the markets would again be quickly 
buoyed by media and government intervention, such conditions would provide no such 
protection. A pattern option or hybrid pattern-barrier option specifying extended negative 
returns may help alleviate these risks to writers, while keeping to the spirit of the 
agreement. 

Pattern derivatives are generally very useful in handling known problematic cases. 
Should a financial company be aware that a certain pattern of returns across one or more 
holdings would cause significant trouble, they can purchase a pattern derivative to cover 
this specific case. Furthermore these derivatives are quite useful in cases where the 
underlying is naturally discrete. For example, while it may be the case that the Fed can 
change interest rates by any continuous value they would like, one may have good reason 
to think that they will continue to make their changes in intervals of a quarter of a point. 
This case is quite amenable to treatment with pattern derivatives, with letters representing 
quarters of a point change. Finally, and perhaps most importantly, this methodology 
clearly applies outside of the specifically financial realm, to that of insurance and real 
options as well. Consider, for example, the case of being dependant on a supplier unable 
to deliver for many consecutive days, resulting in a shortage of supplies. 

In the following sections, we will provide an explanation of patterns and their 
properties. We explain why these apparently elementary derivatives have somewhat 
counterintuitive valuations and we will provide details of the calculations which should 
be used in their valuation. We then make strides towards a fully general treatment and 
discuss possible extensions and further generalisations. 
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2 Numerical considerations 

To be clear, we need to distinguish between the inclusive and exclusive use of patterns. 
Inclusive patterns are patterns that are required to appear during the life of the option  
(as with dddd), and exclusive patterns are patterns that are required not to appear. To 
start, we will concentrate on inclusive patterns and an alphabet {u, d} where each symbol 
has equal probability. We will indicate with L the size of our alphabet; in the case of  
{u, d}, L = 2. We define P(x, n) as the probability of a pattern x occurring in a random 
sequence of length n (from our alphabet). Here are some numerical results for the P(x, n) 
from a brute force approach: 

n u d uu ud du dd 

1 1/2 1/2 0/2 0/2 0/2 0/2 

2 3/4 3/4 1/4 1/4 1/4 1/4 

3 7/8 7/8 3/8 4/8 4/8 3/8 

4 15/16 15/16 8/16 11/16 11/16 8/16 

5 31/32 31/32 19/32 26/32 26/32 19/32 

6 63/64 63/64 43/64 57/64 57/64 43/64 

7 127/128 127/128 94/128 120/128 120/128 94/128 

8 255/256 255/256 201/256 247/256 247/256 201/256 

9 511/512 511/512 423/512 502/512 502/512 423/512 

The first column is the total length of the strings from {u, d}, that we are generating. The 
fractions represent the fraction of those strings that contain the corresponding pattern in 
the table head. For example: 19 out of 32 strings of length 5 contain the pattern ud. The 
first thing to observe, and rather obvious, is that the totals for pattern u are the same as for 
pattern d (and in this case, are equivalent to the total number of strings of length n, minus 
the one string containing all ds or all us, respectively). It is also obvious that, because of 
symmetry, the number of occurrences of pattern uu and dd is the same for any given n  
(as with ud and du). What is not obvious is that the number of occurrences of uu is 
consistently lower than the number of occurrences of ud. 

Now we consider a market interpretation of the above data, the case of a stock price 
and its daily returns. Compatibly with Black-Scholes we can assume that daily returns are 
independent and normally distributed random variables with average zero; therefore the 
stock has the same probability of going up or down on each day. Under this interpretation 
of u and d, the above result tells us that the probability that in the next n days the stock 
will go up for two consecutive days is lower than the probability that it will go up one 
day and down the second. 

Considering now all patterns of three days. The probability of those patterns 
occurring over a period of n days is: 
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n uuu uud udu udd 

1 0/2 0/2 0/2 0/2 
2 0/4 0/4 0/4 0/4 
3 1/8 1/8 1/8 1/8 
4 3/16 4/16 4/16 4/16 
5 8/32 12/32 11/32 12/32 
6 20/64 31/64 27/64 31/64 
7 47/128 74/128 63/128 74/128 
8 107/256 168/256 142/256 168/256 
9 238/512 369/512 312/512 369/512 

Similar to uu and ud in our prior example, the probability of uuu is lower than uud, and 
because of symmetry, the probability of udd is the same as uud. It is notable, however, 
that the probability of up-down-up (udu) is also lower than the probability of up-up-down 
(uud). These differences make a sizable contribution to the proper valuation of pattern 
derivatives, and as we shall see, are accountable to the fact that uuu and udu are patterns 
which overlap with themselves. 

3 Pricing digital one-pattern-options 

Continuing with our basic case, we can consider a European digital option that pays  
A = 1 dollar at expiration (after n days) if during the life of the option a pattern occurs (an 
inclusive use). We assume N = 360 days/year and a yearly 5% interest rate, r. We can use 
the following basic formula for pricing our pattern derivatives with one inclusive pattern: 

/1( , ) ( , )
n

rn N
fn

s S

C x n A s x e
L

−

∈

= ∑  (1) 

where C(x, n) is the price of the derivative, x is the pattern, Sn is a set of all possible 
sequences of u and d of length n and f(s, x) is a function that returns 1 if x appears in s 
and 0 otherwise. We compute the prices C for different options of different maturity and 
different patterns as follows: 

n u d uu ud uuu uud 

1 0.4999 0.4999 0.0000 0.0000 0.0000 0.0000 
2 0.7498 0.7498 0.2499 0.2499 0.0000 0.0000 
3 0.8746 0.8746 0.3748 0.4998 0.1249 0.1249 
4 0.9370 0.9370 0.4997 0.6871 0.1874 0.2499 
5 0.9681 0.9681 0.5933 0.8119 0.2498 0.3747 
6 0.9836 0.9836 0.6713 0.8899 0.3122 0.4840 
7 0.9912 0.9912 0.7337 0.9366 0.3668 0.5776 
8 0.9950 0.9950 0.7843 0.9638 0.4175 0.6555 
9 0.9968 0.9968 0.8251 0.9792 0.4643 0.7198 
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And as we expect, fixing an arbitrary n (time until expiry), the shorter the pattern, the 
more expensive the option; since the shorter the pattern, the less that has to ‘go right’.  
On the other hand, the options involving patterns which overlap with themselves are 
generally worth less than patterns of the same length and time to expiration, which are 
not self-overlapping. 

Similarly, we can price a European call option involving a single exclusive pattern 
with the formula: 

( ) /1( , ) 1 ( , )
n

rn N
n

s S

C y n A f s y e
L

−

∈

= −∑  (2) 

where we use the letter y to indicate an exclusive pattern instead of the letter x which we 
used for inclusive patterns. 

We can also define a US digital (inclusive) pattern option as one that will be 
exercised (and therefore pays the $1) the moment the pattern is expressed. For this 
purpose, we define a function g(s, x) that returns 0 if the pattern x is not in s or the 
position of the pattern as an integer number if x is contained in s. In this case, the pricing 
formula for a US digital pattern option is: 

( ) ( , )/1( , ) min ( , ), 1
n

rg s x N
n s S

C x n A g s x e
L

−
∈

= ∑  (3) 

The difference between European and US options is negligible for ten days but it 
becomes sizable and the effect we are showing is even greater for US options, because if 
a pattern is more likely to occur, it is also more likely to occur sooner, and this affects the 
timing of the payoff. 

At this point generalisations are obvious. 
While the above formulas are theoretically sound, looping over Sn becomes 

computationally expensive for very large n and already impractical for n > 20, with an 
alphabet of just two symbols. Analytical results are therefore needed. Many analytical 
results about probability theory of pattern occurrence can be found in Blom (1982) and 
Blom and Thorburn (1982) who build off the work of Feller (1968) and others. 
According to Blom and Thorburn (1982) and their Theorem 2.1, the probability P(x, t) 
defined as the probability that a pattern x matches for the first time at t in an arbitrary 
sequence of length n, can be given by the following recursive relation: 

1

1

1( , ) 1 ( , ) ( , ) ( )
− −

− +
− +

= = − +

⎛ ⎞
= − −⎜ ⎟

⎜ ⎟
⎝ ⎠
∑ ∑
t k t

k t j
k t jk

j k j t k

P x t P x j P x j x L
L

ε  (4) 

Here, k is the length of pattern x. The first part of the equation is just the probability that 
the pattern occurs at t, whether or not it is the first occurrence. To help determine the 
probability of it being the first occurrence we must subtract out the second term, which is 
the probability of it occurring for the first time at a previous, non-overlapping time. If a 
pattern does not overlap with itself the third term is zero. But if it does, the function εj(x) 
indicates the amount of the overlap. It returns one just in case the pattern overlaps with 
itself at an overlap of size j. For instance, for v = uudduu, ε1(v) = ε2(v) = 1, and εj(v) = 0 
for every other j; and for v = uuuu, εj(v) = 1 for all j, 1 <= j <= 4. 
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With this fundamental formula, the valuations for our basic pattern-options become 
straightforward and we can rewrite equation (1) for inclusive European digital options as: 

/( , ) ( , )
nrn N
t k

C x n Ae P x t−
=

= ∑  (5) 

equation (2), for exclusive European digital, as: 

( )/( , ) 1 ( , )
nrn N
t k

C x n Ae P x t−
=

= −∑  (6) 

and equation (3), for inclusive US digital, as: 

( )/( , ) ( , )
n rt N
t k

C x n A P x t e−
=

= ∑  (7) 

Notice that the brute force approach to the computation of equation (1) has a running 
time of O(Ln) and it becomes unfeasible for n > 20. The exact formula in equation (5) 
instead has a running time of O(n3) and it is very efficient even for large values of n. 

There are three fundamental generalisations to these basic results which must be 
addressed to achieve sufficient generalisation of the basic case. These are, respectively, 
the multi-pattern case, the mixed-pattern case, and the market-tradable case. 

4 Multi-pattern options 

Multi-patterns allow for the possibility that an inclusive-pattern-option (or an  
exclusive-pattern-option) may involve more than one pattern. That is, the condition of the 
option is met just in case one or more of the patterns occur (or in the exclusive case, none 
of the patterns occur). First of all, we observe that patterns may overlap with themselves 
and with each other, therefore the pricing cannot be a linear function of the pricing of the 
individual patterns. We will also define Qe as a set of exclusive patterns and Qi as a set of 
inclusive ones. 

From the definition of digital option, we generalise equation (1) for multi-pattern 
inclusive digital as: 

( ) ( ) /1, ( , )
n i

rn N
i n s S x Q

C Q n f s x Ae
L

θ −
∈ ∈

= ∑ ∑  (8) 

and we generalise equation (2) for multi-pattern exclusive digital as: 

( ) ( )( ) /1, 1 ( , )
n e

rn N
e n s S y Q

C Q n f s y Ae
L

θ −
∈ ∈

= −∑ ∑  (9) 

(Here θ(…) is 1 if the argument if greater than zero, and zero otherwise.) These 
valuations from brute force are clearly more computationally intensive than the basic 
case. Thankfully, Blom and Thorburn (1982) provide an analytical result that allows us to 
write a general formula for the probability of x matching at t and no other prior matches 
from Q as: 
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11( , ) 1 ( , ) ( , ) ( , )
− −

− +
− +

= ∈ = − + ∈

⎛ ⎞
= − −⎜ ⎟

⎜ ⎟
⎝ ⎠
∑∑ ∑ ∑
t k t

k t j
k t jk

j k z Q j t k t z Q

P x t P z j P z j z x L
L

ε  (10) 

Here, the formula is modified only in order to subtract out the probability of the other 
patterns occurring at a prior time as well. We do this by including summation over all the 
z in the set of patterns Q, and modifying εj(z, x) to take two parameters, accounting for 
overlap between a pattern and itself as well as other patterns. It is clear that we can use 
this formula for the multi-pattern generalisation, in all of the types of options we have as 
yet considered. It is notable, however, that this only provides a generalisation to the  
multi-pattern case where the patterns are of constant length k. 

Now, we can rewrite equation (8) as: 

( ) /, ( , )
i

n
rn N

i
t k x Q

C Q n Ae P x t−

= ∈

= ∑∑  (11) 

and equation (9) as: 

( ) /, 1 ( , )
e

n
rn N

e
t k y Q

C Q n Ae P y t−

= ∈

⎛ ⎞
= −⎜ ⎟

⎜ ⎟
⎝ ⎠
∑∑  (12) 

5 Mixed-pattern options 

Mixed-pattern options allow us to address the possibility that a single pattern-option may 
have both a multi-inclusive and a multi-exclusive clause. Consider an option that pays a 
dividend when one of some x inclusive patterns is expressed and none of some y 
exclusive patterns are expressed: 

( ) /1, , ( , ) 1 ( , )
n i e

rn N
i e n

s S x Q y Q

C Q Q n f s x f s y Ae
L

θ θ −

∈ ∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞= −
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑  (13) 

This is the most general formula for a digital option including both inclusive and 
exclusive patterns. This is (potentially) twice as complicated as the basic multi-pattern 
cases, so we again are in need of analytic results. For the mixed case, however, analytical 
results are more difficult to come by. We must combine the cases in a valid way, which 
considers not simply the overlap of an inclusive (exclusive) pattern with another inclusive 
(exclusive) pattern, but also accounts for the overlap of inclusive (exclusive) patterns 
with exclusive (inclusive) patterns. We will discuss this case in a following work. 

6 Market tradable pattern options 

For any options to be market-tradable, we need to address how the valuation of a pattern 
option may evolve during the life of an option, considering the fact that a relevant pattern 
may already be imminent. For instance, if the relevant option involves the pattern uduuud 
and the prior four days returns provided uduu, we must consider the fact that it is more 
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likely to strike the pattern now than it was four days ago, for the fact that now only two 
sequential events need to take place. The inclusion of this case is straightforward, 
although it introduces an additional level of complexity. 

If we identify with w the pattern that is already expressed in the recent past, and we 
define P(v, t | w) as the probability of pattern v occurring for the first time at t given the 
past history w, we can write a recursive formula for P using: 

1

1

( , | ) ( , ) ( , | ) ( , )
−

− − +
−

= ∈

⎛ ⎞
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

∑∑
t

t t j
k t j

j u Q

P v t w w v L P u j w u v Lε ε  (14) 

for 0 < t < k and the previous formula (10), with suitable alterations, when t ≥ k. Should 
one wish to trade a pattern option mid-term, this formula must be used with w being the 
previous k – 1 events or how many events have already taken place, whichever is less. It 
is notable that this formula is a generalisation of the multi-pattern case and makes no 
special considerations precluding the use of mixed-patterns. P(v, t | w) can safely be 
replaced into equation (12) and equation (11). 

7 Conclusions and outlook 

We have thus far considered a simple coupon payout. It should be clear to the reader that 
any sort of instrument which can be valued at a future time can be substituted for these 
coupon payments. As such, the A in our formulas may represent an asset of any variety or 
it may itself be an option, as found in certain types of barrier options (knock-in options) 
and forward starting options (Bouzoubaa and Osseiran, 2010). A may also be negative 
and used in conjunction with standard models of valuation to indicate a loss when a 
trigger is met (knock-out options) (Bouzoubaa and Osseiran, 2010). 

There are furthermore natural changes that can be made to the payout structure,  
where a coupon payment is made or accrued for each occurrence of the pattern,  
for instance ddd. These can come in two varieties. In the first variety, the payment  
is made given every occurrence; in this case, a d immediately following three d’s in a 
row, would trigger another coupon payment, for the fact that it also has two d’s 
immediately preceding it. In the second variety, the payment is made given every fresh 
occurrence; in this case, the trigger resets itself at d, and awaits three fresh d’s in a row. 
In the first case, we can very easily give an equation for the expected value of the option, 
using the coupon and the mean number of occurrences per series, if we assume payment 
is made at the end of the term. The mean number of occurrences per series is simply  
(n – k + 1) * L–k. Given the considerations above, it is sometimes also a surprising fact 
that this value is the same for all patterns of length k, given time to expiry n, and the size 
of the alphabet L, regardless of overlap (though here assuming equal probabilities). 
However, when there is much overlap, patterns will tend to be struck in bunches; this 
should be clear from the fact that in the case of ddd, it only takes one more d, and not 
three, to initiate another payout. So the distribution of payouts will have a considerably 
greater variance. In the second case, the expected value is considerably less for patterns 
with high overlap, so these options should be considerably cheaper than those involving 
non-overlapping counterparts (in the inclusive use) (Chryssaphinou and Papastavridis, 
1988). 
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And finally, there are very few restrictions on the kinds of underlying and partitions 
which may be assigned to our alphabet. In our construction of the partition of the 
underlying distribution, the choice of a two letter alphabet was not essential. All of the 
formulas here mentioned thus far rely on an alphabet of arbitrary size L, and as a 
computational matter, increasing the size of L does not effect time complexity to any 
problematic degree. This allows, for instance, one to slice the distribution of returns in 
the way that uses patterns of extreme returns in an option, for the sake of handling 
volatility, for instance. Similarly, it appears that it is not necessary that each letter in the 
alphabet have equal probability of occurring. And it does not appear to be necessary that 
the successive letters even be independently distributed. Formulas are given by Robin 
and Daudin (1999) for the case of using a non-uniform distribution over the letters and 
for the first-order Markovian case. (Though it bears repeating that the influence of 
overlap does not disappear.) And finally, it is clear that there is nothing special about 
using the partition of the probability distribution of a single variable, as in the case of 
returns we consider here. Should we have a joint probability distribution over two or 
more variables, then we can partition it in the assignment of letters to events. This more 
general case has clear applications in the area of perfect storms. 

We have here only addressed the most basic logical categories of pattern derivatives, 
but we find that they are fundamental and elegant to handle. We will elaborate in future 
work. 
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