
The Probability of Discrete Strings Over
Sequential Data

Casey S. Schroeder
cs@csschroeder.com

East Windsor - CT - USA

May 25, 2020

Abstract

Assuming an alphabet (e.g. {u, d}) and Markov transition matrix
between letters, the basic question we answer is, In a sequence of n
transitions, what is the probability of a string (e.g. udu) occurring
at least once before the final transition n. Using this basic method,
are able to solve the more complex task of evaluating the probability
of statements of the form ψ1 ∧ ¬ψ2 where a given ψ is a disjunc-
tion of primitive statements of the form, string p will occur between
transition 0 and n. We then show that this solution can be applied to
boolean statements of arbitrary logical complexity involving our prim-
itive statements as primitives. Finally, we give a method of evaluating
the probability of sequences of the statements ψ1 ∧ ¬ψ2.

Keywords: strings, sequences, markov, inclusive/exclusive, pattern deriva-
tives, discrete patterns

1

1 Introduction

In the most basic case, consider a random variable which can take one of
two values u or d. A string uddu is said to occur in the sequence of length
n = 10 duududduud at t = 8. Our analysis starts with the question, what is
the probability of getting at least one occurrence of some arbitrary string p
(e.g. uddu) within a sequence of length n produced from successive draws of
a random iid variable X (e.g. {u,d}).

Besides the fundamental nature of this analysis, what makes this ques-
tion interesting from the start is that even if u and d each have the same
probability of occurring, there exist strings of the same length which have
different probability of occurring (one or more times) in sequences of fixed
length. One can see this even with strings of length m = 2, and sequences of
length n = 3. The possible sequences are uuu, uud, udu, udd, duu, dud, ddu,
ddd and ud occurs in 4, uud, udu, udd, dud while uu occurs in only 3, uuu,
uud, duu. More generally for n <= 9 we have the following table ref. [2].

n u d uu ud du dd
1 1/2 1/2 0/2 0/2 0/2 0/2
2 3/4 3/4 1/4 1/4 1/4 1/4
3 7/8 7/8 3/8 4/8 4/8 3/8
4 15/16 15/16 8/16 11/16 11/16 8/16
5 31/32 31/32 19/32 26/32 26/32 19/32
6 63/64 63/64 43/64 57/64 57/64 43/64
7 127/128 127/128 94/128 120/128 120/128 94/128
8 255/256 255/256 201/256 247/256 247/256 201/256
9 511/512 511/512 423/512 502/512 502/512 423/512

This result is in some sense intuitive to a layperson, as uu is more ’pat-
terned’ than ud, and is therefore more surprising. To one with passing fa-
miliarity of iid variables the result seems somewhat counter-intuitive at first.
But an understanding can already be seen in the case of m = 2 and n = 3. If
one sums up all of the occurrences of uu in all sequences of length n, it is the
same as the sum of all the occurrences of ud in all of the sequences of length
n. In particular, for n = 3, as above, this sum is 4 (with uu occurring twice
in uuu). The reconciliation of this fact with the above table is that when uu
does occur, it tends to occur in bunches, since when it does occur, you are
already half way to another occurrence! The result is that more sequences

2

of length n do not have uu than do not have ud, because uu overlaps with
itself.

Another way to state the importance of the result is in terms of wait
times. The corresponding result is that the expected wait time is longer for
the string uu than the string ud in an infinite sequence ref. [1]), and that is
also not cured by counting uuu as one instance instead of two. In terms of
wait times, however, the paradox is a bit stronger. It seems strange that the
probability of getting uu and ud at any given time t in our sequence is the
same and the wait time for uu is longer than for ud, but it is!

One does not have to search far to motivate the importance to decision
making of a procedure for finding such probabilities. Imagine any industry
concerned with production, shipment, or capital reserve. Suppose one is
concerned with levels falling under some threshold for two successive periods.
The probability of levels falling under this threshold for one period is, say,
.05. We assign this event d, while the ”other” region occurs 95% of the
time. Our concern is then to find the probability, r, of striking the string dd
(at least once) over some horizon. If we have this, then we know, e.g., the
probability 1-r of staying out of trouble (e.g. solvent). In what follows we
give a procedure for this and other far more complex situations.

2 Basic Method

In an initial work ref. [2] the author follows a method introduced by ref. [1]
for the evaluation of such probabilities with computational efficiency. Here
we introduce a more general method which uses a Markov transition matrix
and applies to the iid case as a special instance.

Assume first that we have a partition over the space of events, represented
with the alphabet {a1, a2, a3, ..., ai}; for convenience we may use letters from
the standard alphabet {a, b, c...} instead. Initially, we will assume that a
string is any string from this alphabet of length m and a sequence any string
from this alphabet of length n, m < n. If we have a Markov transition
matrix, M , for the events in this alphabet, then we can construct a matrix
Mm, with little m representing the length of the strings. This matrix will
have LmxLm = L2m entries. In the case of {u, d}, we will have the matrix
M as

3

M =

(u d

u 0.5 0.5
d 0.5 0.5

)
for the fact that u and d are independent and the matrix M2 (for m = 2) as

M2 =

uu ud du dd

uu 0.5 0.5 0 0
ud 0 0 0.5 0.5
du 0.5 0.5 0 0
dd 0 0 0.5 0.5

Where the rows represent transitions-from and the columns transitions-to.
Note that this matrix is constructed algorithmically given M and m.

We then, concerning ourselves initially with a single string of length m
which we are concerned to calculate the probability of striking:

1. Set the transitions-to column for the string of our concern to have zeros
for every entry.

2. Take Mn
m for n the length of the sequence.

3. Multiply by an initial ’prefix’ vector, representing the state of the data
prior to the beginning of our sequence of length n; for instance, if our
initial state is ud we take (0, 1, 0, 0)Mn

m.

4. Sum the entries in the final vector to get a single probability number
that represents the probability q, of not getting the string in question.

5. Finally take 1− q to get the probability of striking the string.

Note that

i this procedure works given any Markov transition matrix, M , whether or
not the entries represent independence.

ii if one wants to know the probability of not striking a string, one can
simply calculate q, skipping 5.

iii if one wants to know the probability of striking string p1 or p2 or p3...
One can apply 1 to each row simultaneously and continue.

4

iv if one wants to know the probability of not striking p1 nor p2 nor p3...,
one can follow iii and skip 5.

v if one wants to know the probability of striking string p1 or p2 or p3...
and *not* r1 nor r2 nor r3... one can follow iii using p1 or p2 or p3...
or r1 or r2 or r3... (notice, no ’not’ nor ’nor’) yielding probability s, and
then follow iii for r1 or r2 or r3... (again no ’not’ nor ’nor’) yielding
probability r, and finally taking the difference s - r to get the probability
sought. This is easily shown with a venn diagram.

vi if one has strings of varying lengths, follow the methods as required for
the maximum length, but remove all transitions-to which contain the
strings of smaller lengths inside the strings of length m.

vii we can handle data of multiple dimensions provided the event regions
form a partition of the data space; in other words, provided the letters
of our alphabet are assigned to elements of a set of regions of the data
space which form a partition.

viii note that if one wants to specify a larger event at a given location in a
string, one can specify a string as, for instance, < a, b, {c, d} >, indicating
c ∨ d at the third position and this can be compiled into the matrix by
setting the columns for both < a, b, c > and < a, b, d > to all zeros.

The primary drawback of this method is the size of the matrix and the
required computations given large alphabets (or data of high dimensionality),
large m, or large n, if one is attempting to do calculations on the order of
seconds rather than minutes or hours. Note that for i through v, and vii, the
run time is dominated by the construction of Mn

m, which is O(n∗ (L2m)). For
the case of vi we also have the overhead of finding the smaller strings in the
larger strings and applying the methods of viii will also involve overhead.

3 Logically Complex Statements

In the above section we introduce complex statements of the form ψ1 ∧ ¬ψ2

where a given ψi is a disjunction of primitive statements of the form string
p will occur between transition 0 and n. We will here show that, in fact,
we can find the probabilities for arbitrary boolean logical formula involving

5

these primitive statements, incorporating the above method into an addi-
tional procedure. Imagine you have an arbitrary logical formula where these
primitive statements are the literals. You can translate any such formula
into DNF as φ

Ti = (p1 ∧ p2 ∧ p3 ∧ ... ∧ pw... ∧ ¬q1 ∧ ¬q2 ∧ ¬q3... ∧ ¬qy)

φ = T1 ∨ T2 ∨ ... ∨ Tz
for some finite w, y, and z. With a φ of this form we have the following

algorithm for evaluating its probability.

1. Apply the Inclusive/Exclusive principle to change P (φ) into

P (φ) = P (T1)+P (T2)+...−P (T1∧T2)−P (T1∧T3)−...+/−P (T1∧T2∧T3...∧Tz)
(1)

2. For a given conjunctive term, collect all of the negated terms qi into a
conjunction Q and write

T1 ∧ T2 ∧ ... = (p11 ∧Q) ∧ (p21 ∧Q) ∧ ...(p12 ∧Q) ∧ (p22 ∧Q) ∧ ... (2)

3. Applying the Inclusive/Exclusive principle, again, to the right hand
side in 2, you get

P ((p11 ∧Q) ∧ (p21 ∧Q) ∧ ...(p12 ∧Q) ∧ (p22 ∧Q) ∧ ...) =

P (p11 ∧Q) + P (p21 ∧Q) + ...+ P (p12 ∧Q) + P (p22 ∧Q) + ...

−P ((p11 ∧Q) ∨ (p12 ∧Q)) + ...

(3)

4. Note that every term will be a combination which takes the form (e.g.
the last line) P ((pji ∧ Q) ∨ (plk ∧ Q) ∨ ...) and this will reduce to a
statement of the form P (pji ∨ plk ∨ ... ∧Q), which is the form which we
already know how to evaluate from the previous section.

Converting an arbitrary formula to DNF is not efficient and neither is
applying I/E once, much less repeatedly. We are dealing with a method of
high complexity. The reason to point out this method is not its practicality.
There are two good reasons to point it out. The first is that it gives one a
target to shoot for with approximate methods. The second is that it shows
that one can use a collection of statements with the form pji ∨ plk ∨ ... ∧ Q
as probabilistic proxies for arbitrary logical formula involving these primitive
statements.

6

4 Statements Complex in Time

We present here a method for handling sequences of complex statements. We
allow statements of the form

φ = ψ1 ∧ ¬ψ2

where a given

ψi = p1 ∨ p2 ∨ p3... ∨ pr (4)

for finite r. This is the most general form of statements found in section 2
and the form to which all others can be reduced for the sake of evaluation.
We can form sequences of such statements

S =< φ1, φ2, ..., φk > (5)

Here S is understood as covering a data series length n, but the φi are under-
stood to strike at some time t < n for the first time, provided the probability
of φ for a sequence of length t, minus the probability of φ for a sequence of
length t-1, is non-zero. The equation becomes:

P (S, n) =
n∑

j=0

pr(φ1, j)P (S − φ1, n− j) (6)

Where pr(φ, j) is the probability of φ occurring for the first time at j just
mentioned.

We have until now, furthermore, assumed that the window for which
strings are to strike - or not to strike - is of length n, the same for all strings.
This assumption is not necessary. We can assume instead that strings have
start and end times which vary across strings within a given φ. With this
stipulation removed, instead of removing all strings in the disjunction from
our matrix at the very beginning, we remove them, instead according to
the timing of their windows. This will change the matrix dynamically with
time, instead of fixing it at the beginning of our multiplication, but nothing
else changes. This can be used simultaneously with the equation for P (S, n)
above.

7

5 A Note on The Market For Pattern Deriva-

tives

The statements we have described make for a natural class of financial deriva-
tives. It is further noted here that the full market for such derivatives can be
supported as long as arbitrary disjunctions of strings can be priced; which
they can if one has a transition matrix over the elementary states, as shown
in our initial analysis.

This is because the position of holding a ’pattern’ (as the author has
called them in previous publications) of the form φ = ψ1 ∧¬ψ2, is simulated
with holding one of the form ψ1,2, understood as containing all the strings
in ψ1 and ψ2, and selling ψ2. Furthermore, any arbitrarily complex logical
formula can be priced based on the market price of certain contracts of the
form φ, as described by our algorithm. The price equilibrium of every logical
’pattern derivative’ will therefore be set by the prices of pattern derivatives
of the form ψ.

Note that this reduction applies also to sequences of patterns, but that
sequences, as we have described them, do not allow for arbitrary logical forms
of patterns in the sequence. They are restricted to φ = ψ1 ∧ ¬ψ2. It is an
open question whether this restriction can be lifted, or made more general.
The answer appears related to the issue of incorporating derivatives timed
to payout when the pattern is struck (American variety), rather than the
(European) variety supported here, which pays out at the end of the term
(n).

The interested reader can find more discusson on the markets for pattern
derivatives in the work ref. [2] and ref. [3]. These give more tractable methods
for the form φ = ψ1 ∧ ¬ψ2, in the case of independence over time (i.e. not
the general Markov case).

This work was originally written March, 2019.

References

[1] Blom, G. and Thorburn D. (1982). How many random digits are re-
quired until given sequences are obtained? J. Applied Prob. 19, 518-
531.

8

[2] Schroeder, C. S. and DiPierro M. (2012) Pattern Derivatives. Intl J. of
Financial Markets and Derivatives.

[3] Schroeder, C. S. and DiPierro M. (2014) Pattern Derivatives Extended.
Unpublished, available at: www.csschroeder.com/papers

9

