
An Advanced Introduction to Reinforcement
Learning

C. S. Schroeder

March 10, 2012

Abstract

In the first half of this paper I intend to provide an introduction to
the topic of Reinforcement Learning within Machine Learning. Only
assuming a Bachelor’s Level understanding of mathematics and re-
cursion. It is an ”advanced” introduction for the second half, which
discusses two limitations of the basic reinforcement learning approach
- handling large state spaces and handling complex actions - and ap-
proaches to solving these problems. This is an edited and reformatted
version of an earlier paper, originally written in 2009.

1

1 Introduction

The fundamental problem in reinforcement learning is to understand how
agents can learn from punishments and rewards, without given explicit ex-
planation of what it was that they did right or wrong in a given case. It is the
task of the agent to infer what was done right or wrong in a given situation by
learning from the feedback which is associated with their actions. Reinforce-
ment learning is a natural phenomenon. Understanding how reinforcement
learning takes place, and may be replicated, does not always present a serious
problem. For instance, it may not be terribly difficult to model the behavior
of a rat at the feeder-bar being fed sugar pellets. The more difficult problem
is to devise an algorithm by which the rat could learn from its experience
that hitting the feeder bar and eating the pellet is detrimental if done too
often. That is, the rat must learn the long-term benefit/detriment of hitting
the feeder bar at different frequencies. In order for the rat to learn such
a thing, it must take into account negative reinforcement far distant from
single instances of pellet eating. The problem of accounting for such distant
debt (or payoff in the opposite case) is what reinforcement learning promises
to solve.

This essay is a brief tour of classical reinforcement learning, in the rig-
orous form given to it over the past three decades, followed by an analysis
of the limitations and attempts to overcome those limitations over the past
couple of years. I will not be able to account for every subtlety in the vari-
ous approaches within classical RL or within the attempts to overcome the
limitations, but I hope to present the basic lay of the land and suggest a
direction in which research may proceed.

2 Classic Reinforcement Learning

Reinforcement Learning finds its roots in a mix of Dynamic Programming
and Monte Carlo Simulation. Effectively, it can be viewed as an attempt to
overcome the limitations of Dynamic Programming; an attempt that has sim-
ilarities to both the methods of Monte Carlo Simulation and Dynamic Pro-
gramming itself. This understanding of the relationship between the three
fields is the running theme of Sutton and Barto’s book Reinforcement Learn-
ing [12]. I will only hope to summarize this understanding here. For the
more thorough treatment, the reader is encouraged to study this book by

2

two leaders in the field. Needless to say, the following presentation of what
I call Classic Reinforcement Learning borrows much from this work.

2.1 Markov Decision Processes

Dynamic Programming (DP) and Classic Reinforcement Learning alike, ad-
dress a very specific case of a decision problem. In this decision problem, the
agent’s goal is to maximize reward. In order to do this, the agent has the
following capabilities and limitations:

1. The agent is completely aware of what state they are in;

2. The agent knows what actions they have to choose from in that state;

3. The agent knows an action will always take them to some state at the
next time period, i.e. the action will not span multiple time periods;

4. The agent does not know a priori what next state an action will take
them to (though a more restricted form of DP assumes they do); and

5. The agent receives rewards (costs) when they enter the next state.

Furthermore the world is characterized by the fact that states, actions, and
rewards all interact according to the following equivalence:

P (s|s′, a) = P (s|s′, a, s−1, a−1, s−2, a−2, s−3, a−3, s−4, a−4, ...) (1)

That is, the probability of entering a given state s (with its associated dis-
tribution of rewards) given the previous state and action is the same as the
probability of entering that state given the agents entire history of states and
actions. This is the Markov Property which makes this process a Markov De-
cision Process (MDP). What makes this important is that in order to decide
what is best for the agent to do, we do not have to keep track of where it
has been; we can simply decide based on where it is at present and where
it might go thereafter. Moreover, as indicated, the agent does not have any
limitations on knowing what state they are in. Their current state is fully
observable, so there will be no uncertainty as to where they are at any given
time. What MDPs do not assume, however, is that our agent or ourselves
understand what actions will take them to which next states, what the re-
wards are in those next states, or that they have a clue as to how to act
rationally in this process.

3

2.2 Dynamic Programming

So far we have not made any assumptions that are unique to dynamic pro-
gramming (note that we will assume by DP that we mean a probabilistic
DP). MDPs are the context in which RL and DP are assumed to both be
applicable. But DP is unique in that it assumes in advance that we have a
model of our environment. That is, that we do in fact know P (s|s′, a) for
every s, s’, and a; and moreover, we know R(s) for all s, i.e. the payout of
rewards in state s. Given this understanding, Dynamic Programming seeks
to figure out the best policy for our agent to take.

What is important to our agent is not simply what next state will provide
them with the most reward. What we are interested in is what next state
will garner us the most long term reward - or in other words, the next state
with the most value. The DP method iteratively improves upon your current
policy by making alterations to choose the states with more value according
to your current policy valuations. As such, it is a bootstrapping method, and
that it works by such a simple method is somewhat amazing on first glance.

The heart of Dynamic Programming is the Bellman Equation for the
value of state s under policy π:

V π(s) =
∑
a

π(s, a)
∑
s′
Ps,a,s′ [R(s, a, s′) + dV π(s′)] (2)

Where π(s, a) is the probability of taking action a, when in state s, according
to policy π; Ps,a,s′ is the probability of ending up in state s’ after taking action
a in state s; R(s, a, s′) is the reward you would receive in state (after taking
action a in s); and dV π(s′) is the value of s’, discounted according to discount
rate d. That this understanding of the value of a state is appropriate can
be seen most clearly by stripping away the probabilistic factors. If we are
considering a deterministic policy with a deterministic environment, then the
above equation reduces to:

V π(s) = R(s, a, s′) + dV π(s′) (3)

Where a is the action that you will in fact choose in state s, according to
policy π; and s’ is the state that you will in fact end up in when you make
this decision. If we expand this equation, we then get the following:

V π(s) = R(s, a, s′) + d[R(s′, a′, s′′) + dV π(s′′)] (4)

4

= R(s, a, s′) + dR(s′, a′, s′′) + d2V π(s′′) (5)

= R(s, a, s′) + dR(s′, a′, s′′) + d2R(s′′, a′′, s′′′) + ... (6)

This being a standard interpretation of value, e.g. the Discounted Cash Flow
model within finance, where the discount rate is [1/(1+risk free rate)]. (Of
course, the probabilistic model applies a wider range of cases in finance as
well). DP works as follows:

1. Create an arbitrary policy π.

2. Evaluate π to find V π

3. Improve π by being greedy with respect to V π for every possible state.

4. Check to see if π has changed; if so, go to 2; if not, stop.

For a given π, we can find V π according to the following algorithm ([12] p.
92):

Initialize V(s) = 0 for all s;

Repeat:

e <- 0

For each state s,

v <- V(s)

V(s) <- Bellman(s, V)

e <- max(e, |v - V(s)|)

Until e < delta

Return V

Where ”delta” is some small positive number, which all differences must be
less than; and Bellman(s, V) is the function V(s) as defined above in 2, and
V is here a table of values, where the values in V are used by Bellman to
define new values for V. Initially, a state’s value will get updated with the
rewards that the agent would get in the next state, weighted according to the
probability of entering that state. As multiple iterations over the states are
made, however, these rewards get discounted and propagated back to earlier
and earlier states by the use of dV (s′) in the update; this continues until all

5

states get close enough (according to the choice in delta) to the real value
function for V π.

Note that this method of evaluation is made possible by the fact that we
have a model of the environment. Without this information, we would not
be able to iteratively sweep through the states to determine the apt updates
for V (s). Once we have the updated V π in hand, we improve upon our policy
with π′ defined as follows:

π′(s, a) = 1, a ∈ {a : argmaxa
∑
s′
Ps,a,s′ [R(s, a, s′) + dV π(s′)]} (7)

and 0, otherwise Where we again use our model of the environment, but
now use the value function for the policy as well. In general this update is
greedy in the sense that it assigns a probability of 1 to the action with the
greatest likelihood of taking them to the state with the most value, according
to our current policy’s evaluation. (To break ties, we can replace 1 with
1/|argmaxa

∑
s′ Ps,a,s′ [R(s, a, s′) + dV π(s′)]|, in order to weight equivalent

maximal options equally; in most cases ties will be rare1. It turns out that
if we just keep improving like this, we will converge to the optimal policy;
so when our policy stops changing, we can stop iterating. At this time we
define the optimal policy as above, with its optimal value function, V ∗(s)

A similar method allows us also to converge on a value for any given ¡state,
action¿ pair. The value for a state action pair is indicated with Q(s, a). The
Bellman optimality equation for Q∗ is:

Q ∗ (s, a) =
∑
s′
Ps,a,s′ [R(s, a, s′) + dQ ∗ (s′, a′)] (8)

This equation will be important when we come to consider Q-learning in a
later section.

2.3 The Curse of Dimensionality

Bellman, for whom our above equation is named, coined the phrase the
curse of dimensionality [2], as a depiction of the fact that as the number of
dimensions in a state space grows, the number of possible states in that space

1This is the extension of the deterministic case presented in [12] to the stochastic case;
the legitimacy of this extension is mentioned at (p. 97).

6

grows combinatorially. This turns out to be a problem in many disciplines,
but the problem is pronounced in DP for the simple fact that each time we
update V(s) or π(s, a) in our above procedures, we have to loop through all
the states. Naturally, this is not feasible if the state space is large, in which
case we may well do better to sample from the agent’s possible trajectories
through state space.

If one has a model - as in the cases to which DP applies - a standard
means of generating such samples is by Monte Carlo Simulation2. Here we
start our agent in a given state; we stochastically determine which action
the agent will take, according to the current policy π(s, a); we stochastically
determine what state the agent ends up in next, according to P (s|s′, a); then
determine their reward in that state, according to R(s’); and we continue like
this until the agent reaches a stopstate.

When we reach a stop state, we update an array, Returns(s), for any
and all s, by appending the total discounted return that we gathered in that
episode, after having visited s the first time. We then update our function
V(s) as such:

V (s) = AV G(Returns(s)) (9)

i.e. the average of the returns-per-episode (after visiting that state the first
time in that episode). Then just like the case of DP, we update our policy to
favor visiting those states which have a higher V(s). This particular algorithm
is called the ”first-visit” Monte Carlo method (, p. 113). There are variations
on this theme, but the most important point that this brings up is the idea
of trading off between exploitation and exploration. In the above algorithm,
you will notice, we trace one trajectory through state space before we update
our policy. If we were to take our V(s) after one such episode, and update
π(s, a) in the same manner as we did for DP above, we could actually be
stuck with the same non-optimal policy for all eternity! Assume that our
V(s) is initialized with 0, for all s (as is common), and assume the rewards
are positive and non-zero at each step. Assume, moreover, that in this case,
the transitions from state and action to the next state are deterministic, i.e.
where P (s|s′, a) is only either zero or one. In such cases, if you choose one
action, a1, it will take you to state s1; and if you choose another action, a2,

2CITATION Bar03 l1033 Note that although one needs a model to create a simulated
trial via Monte Carlo Simulation, the complexity of these models may be significantly less
than the models required by DP ([12] pp. 129-130)

7

it will take you to another state, s2. But if you chose a1 first, then V(s1)
will get a higher value than V(s2); since s2 not being visited at all means
V(s2) will still be zero. But if you never visit s2 at all - and you wouldn’t if
V (s1) > V (s2) and you follow the strict greedy policy - it is certainly hard
to determine what the real value of s2 is. Our update of π(s, a) in this case
could effectively rule out visiting a state we should visit.

It turns out that in order for our algorithm to converge in the limit, it
needs to continue to explore all states, indefinitely. A common way to do this
is to break any decision point into two; with some probability 1-q, you will
choose among those actions which lead you to states with the best V(s) values
according to your current estimate; and with probability q, you will choose
among all the available actions with uniform probability. This allows you to
exploit what you know, with probability 1-q, and explore with probability
q. In many cases, q will be dynamic, and take on smaller and smaller values
as the number of samples increases; this can lead to quicker convergence,
without losing anything in theory.

It is important at this stage to take note of a few details. First, although
Monte Carlo Simulation assumes that you have a model of the environment
with which to generate samples, the learning method described in this section
does not necessitate that the samples come from a Monte Carlo Simulation.
If, for instance, you have a MDP that can be broken down into discrete
episodes and you have a data set where each record is a record of a distinct
episode - whether it be generated or naturally observed - then you can cer-
tainly apply the learning method described here in either case. The problem
is typically that naturally observed data sets typically provide a small sam-
ple size for this method to be effective; this is one thing which reinforcement
learning has the promise of overcoming, and may bring with it faster con-
vergence to optimal results when data is plentiful. Secondly, although the
method of learning from samples has a clear benefit over needing a com-
plete model, the method traced here has its limitations as well. Perhaps the
primary limitation is that it does not provide any ”in game” learning. For
instance, if we wish to use reinforcement learning to model biological organ-
isms - and indeed, the inspiration for reinforcement learning is largely due to
its appeal as a natural form of learning - our organism would do well to learn
from reinforcement while it was alive, and not have to wait for the next life
(with its forthcoming policy improvement) before it modified its behavior.
The ability to learn as you play is something which reinforcement learning
also has the promise of providing.

8

2.4 Classic Reinforcement learning

Reinforcement Learning, like the learning discussed in the previous section,
is a method of learning from sample experience; but like Dynamic Program-
ming, Reinforcement Learning involves bootstrapping. Unlike DP, the boot-
strapping in RL is a means to attain faster convergence to the optimal policy
from the available sample experience; and unlike the Monte Carlo Learning
methods, RL provides the prospect of achieving ”in game” results and faster
overall convergence. There are many variations on even the classical forms
of RL, but here I will concentrate on only one, called Q-learning.

As with all forms of RL, Q-learning uses the rewards attained in the
course of action to guide future action (i.e. reinforce those behaviors that led
to rewards); this in itself is not unlike the method of the previous section, but
here we actually update the value function on the fly, by turning the Bellman
equation into an assignment. Q-learning, as the name suggests, focuses on
the function Q(s, a), which was introduced earlier; the Bellman optimality
equation is converted into the assignment:

Q(s, a) = Q(s, a) + alpha[r + dmaxaQ(s′, a′)−Q(s, a)] (10)

The idea here is that the updated value of Q(s,a) should be the old value of
Q(s,a), plus the difference between the value of Q(s, a) that is indicated by
the current sample (i.e. r + dmaxaQ(s′, a)) and the current estimate (Q(s,
a)), multiplied by the learning rate alpha (to temper changes to Q(s,a)).

This bootstrapping mechanism, allows updates to be made to the value
of Q(s,a) on the fly, immediately after a new reward, r, is received. We do
not have to wait until the end of an episode to update this value, and can
therefore modify our policy using Q(s, a), in the middle of a game. How we
modify our policy, of course, has certain restrictions. That is, we must not
simply use the greedy strategy of choosing the action maxaQ(s, a), when in
any state s. If we want our policy to converge to the optimal policy, we must
continue to explore our options. Hence, a mixed strategy of following Q(s,
a) and choosing any action whatsoever (as described in the previous section)
may be appropriate - though other algorithms are available.

Q-learning is among the class of learning algorithms which are called
temporal difference algorithms. They are called this for the fact that the
update of the value function is based on the difference between a previous
estimate of the value function and a new instance (the sample). The above

9

algorithm is also among the sub-class of TD(0) algorithms. We can expand
the above algorithm to be among the class TD(n), for any n, as follows:

Q(s, a) = Q(s, a)+alpha[r0+dr1+d
2r2+...+d

n−1rn−1+d
nmaxaQ(sn, a)−Q(s, a)]

(11)
In this case, we run our update of Q(s, a) n steps after we execute a in s, i.e.
after we have reaped all of the rewards in n-step window following our agents
decision to a in s; we then add to that the discounted current estimate of
maxaQ(sn, a), where sn is the state we find ourselves in currently (n steps
after being in s). Different values of n can make a significant difference,
depending on the problem involved. It is also worth noting that this amounts
to a unification of the method in the previous section (a Monte Carlo method)
with Temporal Difference methods: if you suppose that an action executed
in a state less than n steps from the finish of the game gets updated simply
with the discounted rewards accrued after that action (and before the end of
the game), then if n is infinity, you effectively have a method similar to that
of the previous section3.

3 Two Problems with Classical Reinforcement

Learning

While the general framework for reinforcement learning is intuitive and pro-
vides significant benefits over the more traditional Dynamic Programming
and Monte Carlo approaches to solving MDPs, it comes with limitations of
its own. In this section we will address some of those limitations, as well as
various attempts which have been made to overcome them.

3.1 Dealing with Non-Markov Decision Processes

The classical theoretical results in reinforcement learning rely on the agen-
t/environment instantiating a Markov Decision Process (MDP). This is an
inherent limitation, since there are at least two other possibilities which may
come into play in real world applications. The first possibility is that the state
signal may not be a perfect indicator of the environment, but instead result

3Though not exactly: this is an every-visit method, rather than the first-visit method
discussed previously; but nonetheless, the idea is very similar

10

from a stochastic function, which takes the environmental variables as input;
such models are called Partially Observable MDPs (POMDPs). Second, it
may be that the world just does not have the Markov property; instead, the
next state may be the probabilistic result of the immediately prior state, as
well as the state at any other time in history; within this truly non-Markov
case, there are naturally different classes of situations, depending on how far
back in time is relevant; but provided all the past needs to be in the current
state representation, we likely have an intractable problem you cannot make
into a standard MDP.

We may want to handle POMPDs and non-Markov processes separately.
However, the non-Markov case may often be understood as simply an instance
of a POMDP. Note that if the relevant history always falls within a constant
sized window of time, we can make a MDP out of this process. We can do this
by simply including the history of the original state signal over this window,
in a new state signal that we will use to make decisions going forward. Often,
however, we will not want to include all of these values in the signal, in order
to minimize complexity. In that case, our state signal may include some
variables which are a probabilistic function of the history, but not the whole
window of history - that is, you have a POMPD. Furthermore, the crux of
the problem in handling POMPDs is that we have to incorporate our history
of observations for the sake of judging our current state - and thereby making
a better decision as to what to do. So fundamental to our problem in either
the POMPD or the pure Non-Markov case is the incorporation of history
into our calculations to help determine what will happen next 4. As a result,
our concern here will be how to incorporate the history of the state signal to
provide better predictions in general.

As in the case of DP (with the full model of the MDP), if one has a full
model of the POMDP, there are precise results that can be achieved. The
results are achieved in a fashion similar to Dynamic Programming because if
we take the belief state with respect to the environment as the state signal
itself, we effectively have a new MDP ([6]). Although belief states involve
high complexity and continuity, they can be simplified in various ways 5,
which may make them feasible as a method in large applications without
a model. An alternative is to incorporate history explicitly; such was the

4It is worth noting that you can roughly understand the difference in this way: in the
Non-Markov case, we try to use history to extend our experience in time; while in the case
of POMPDs, we use history to extend our experience in space.

5For an example, see [14]

11

approach of McCallum. From 1994-1996 McCallum presented a number of
different methods to handling memory; these various approaches culminated
in a single, synthesized approach, as represented in the U-Tree algorithm
([7]), which will be our focus here 6

The basics of the U-Tree algorithms are not hard to understand; but the
details are not so simple. We will concentrate on the basics, and discuss some
of the difficulties in the details. At a very high level, the algorithm compares
a window of the recent history of the state, including the present state, to
previous examples that occurred within that window (including the ”present”
at the time); it will find the examples which match the best (within some
threshold) to the current situation. It will treat these examples themselves
as the relevant ”current state”, s; and determine the appropriate action to
take, according to the action which maximizes the Q(s,a) function.

The relevant components in the history and current signal are represented
as nodes in a tree. The current instance will filter down to a leaf in the tree
pending the tests at each node; for instance, a node may check to see if
two time steps prior, the variable was ¡ or ¿ or = to 0, and may branch
appropriately. It will go through a series of such tests, until it reaches a
leaf; the instances stored at this leaf node will be the instances which are
relevantly similar to the current instance; and altogether will represent the
state, s, which is under consideration when we choose the action maxaQ(s, a).

The calculation of this value function, Q(s,a) takes place according to
”one step of dynamic programming on the Q-values” 7 as follows:

Q(s, a) = R(s, a) + P (s, a, s′)maxa′Q(s′, a′) (12)

Where, R(s, a) is calculated as the average among the instances stored at
this node, of the rewards attained taking action a. P(s,a,s’) is calculated as
the count calculated as:

"the number of instances in this node, which took action a, whose successor is stored in the leaf-node s’"

--

"the number of instances in this node, which took action a"

6This paper is presumably a partial report on his thesis (which I could not get my
hands on); It should be said that McCallum’s approach promised to do more than simply
handle memory; it promises to handle selective perception, i.e. the problem of choosing
when to act so as to gather more information before proceeding on a course (e.g. going
out of the way to look for a landmark in a maze). I will have little to say about this subtle
issue here; though clearly, McCallum does provide one approach to this.

7 [7] section 3.2 step 3

12

Both of these values can be stored and updated upon the arrival of a new
instance (after the action is taken, and next state observed). This much is
fairly straightforward. What is more difficult to understand is how the tree
is to be formed in the first place. These are the details mentioned above; and
they are not trivial.

At the start, the tree is empty, but for the root-node. After some pre-
specified number of steps, k (and then again after successive k), the algorithm
evaluates whether it is beneficial to split a given leaf node, on what attributes,
and at which point in time (i.e. the attribute at its present state or at its
state some steps prior to the current time index). This act of splitting is
actually a matter of deciding whether to add branches to the ”on line” tree;
these branches currently reside ”in the fringe”, as parts of a parallel, deeper
tree not used for online categorization. The Kolmogorov-Smirnov test is used
to judge whether branches on the fringe come from different distributions,
and hence should be added to the online tree for the sake of better predicting
value. Most of the subtleties involve computational techniques for judging
the fringe8. McCallum’s tests with the algorithm indicate its relevance; and
the algorithm remains very important today -finding application in some of
the most recent work on hierarchical reinforcement learning 9, which is what
we turn to now.

3.2 Return of the Curse

It is clear that our work to incorporate history to make better decisions
did little to help with the problem of complexity. The need to keep track
of history only added dimensions to the fold. The curse gets no better as
we try to scale to larger applications from which we expect more. In fact,
in larger applications, we have not only issues regarding the complexity of
the state; another aspect to the curse is the complexity of actions. Actions
can be complex in both their span over space (concurrent actions) and their
span over time (plans). To deal with complexity in time, researchers have
introduced Hierarchical Reinforcement Learning. The basic idea is that an
agent will make decisions to execute sub-policies which can then execute
their course going forward without the need for incremental decisions (and
thereby computing resources) along the way; in this way, they will not need

8 [7]section 3.2
9I will address HRL in general here; the applications of McCallum’s algorithms are to

be found in ([4]) and ([1])

13

to make complex decisions at each step - or at least, the complexity will
be decreased. These sub-policies effectively help form a hierarchy, with a
master policy at the top, primitive actions at the bottom, and any amount
of sub-policies and sub-subpolicies, etc. in between. If we are to handle
decisions over sub-policies in a uniform manner with actions themselves, we
must understand actions/sub-policies as capable of taking time to execute,
and not simply executed between states; such a situation raises the need
to introduce another sort of process: the semi-Markov Decision Processes
(SMDPs).

Following ([13]) in their initial presentation of the idea 10, such sub-
policies are called options. An option consists of a set of states in which the
option can be chosen, S, the policy that will be followed should the option
be chosen, π, and a stochastic termination condition, β(s), which determines
the probability that the option will terminate when one enters a given state,
s. In their simplest form, such options are Markov Options, however, a more
flexible form of option is the Semi-Markov Option; the latter may consider the
history of the states and actions which have taken place since the initiation
of the option. Semi-Markov options are necessary in particular for options
which have a set expiration after some time11. The general form of the update
for our new Q function, resembles the original update closely:

Q(s, o) = Q(s, o) + alpha[r + dkmaxo′Q(s′, o′)−Q(s, o)] (13)

The only substantive change here is the inclusion of k as the exponent of the
discount value. This exponent is necessary because r is the sum of discounted
values during the course of o on this trial. We also assume here that o is
restricted to a certain set of options; in particular that o is selected from the
set O of available options. It can be shown that this update rule will converge
to QO

∗(s, o), which is the value function for the optimal policy restricted to
options in O within an SMDP12.

10The work of ([8]) and ([3]) beg mention here; a synopsis of these different approaches
can be found in ([1]) pp. 54-61. I chose the ”options” approach because I believe it the
most general and gentle introduction to HRL.

11This point is made in ([13]) on page 7 (which may actually be p.188 in the journal);
these authors fail to make the simple point that if we allow for the agent to use state
as external memory, this can be avoided with a simple counter variable; using external
memory in RL (at least for other purposes) has naturally been proposed elsewhere ([9]).

12Page 9 in the copy I have; likely 190 in the journal.

14

A further extension of this work is to allow the option to not only ter-
minate according to β(s), but moreover, allow the agent to interrupt this
option in order to start along a different course of action. The scheme for
doing this is also presented in ([13]). Furthermore, important work is being
done to deal with complexity in space within the framework of Hierarchical
learning - i.e. concurrency - as well. Researchers Rohanimanesh and Ma-
hadevan13, among others, have introduced a framework which complements
the hierarchical solution to complexity in time; and a natural extension of
such concurrency is multi-agent systems, which are also being addressed14.

We will not pursue these topics here, though they will clearly be important
in many cases. Instead, we will simply raise some issues within the general
framework of hierarchical learning, which may be the most important to
resolve first. These issues are quite simple to understand: if we have an
agent who is capable of various actions and capable of experiencing various
things, we would like for this agent to be able to learn options; not simply
in the sense of when to choose a given option, but in the sense of being able
to abstract the option for themselves, in order to be able to choose it going
forward. Moreover, we would like, if possible, to understand this abstraction
in a uniform manner with state abstraction; or at least, understand how these
two forms of abstraction work together15.

One way for the agent to learn such options is reward shaping. Reward
shaping hands out rewards for reaching states that are deemed as ”progress”
toward the actual goal; something like rewarding a checkers player for jump-
ing an opponent and taking a piece. It is not the final goal of winning the
game, but its progress. Unfortunately, in some cases, it can lead the agent
to exploit a ”glitch” without ever getting closer to the real goal16. And of
course, even if such reward shaping; we would like a more organic solution
to option discovery; since this approach still rests on ”the hand of God” to
shape the rewards. Despite this problem being well known, progress remains

13Cited in ([1]) page 61ff
14See ([1]) page 64ff
15As Sutton, et al, acknowledges: ”Key issues such as transfer between subtasks, the

source of sub-goals, and integration with state abstraction remain incompletely under-
stood”([13]).

16([10]) mention the case of programming an automated soccer player to be rewarded
for ”getting possession” of the ball when trying to score a goal, in which the player ”learns”
to vibrate against the ball (p. 787); the issue of reward shapes may be understood as the
fundamental problem with the human condition.

15

uncertain; there are a few attempts to address the issue, but I do not think
enough progress is being made 17.

4 Conclusion: Toward a Full Treatment

Clearly the framework of Semi-Markov Options, by definition, allows for the
influence of history, so within the options framework, it should seem clear that
we can use the U-Tree algorithm to maintain this history. This in fact is what
([5]) have done. There approach is to build a distinct U-Tree for each option.
The leaves of these trees then represent the relevant states for the option, on
the basis of which they can decide what to do when that option is in use.
Furthermore, they allow for intra-option learning - that is, the ability for one
option to learn from the results of another, ”When several options operate
in the same part of state space and choose among the same actions”(p. 4).
This enhances the effectiveness of the algorithm significantly (p. 6). As they
understand it, there are a set of options, with their respective U-Trees and
above the options sits a single policy. The U-Tree dynamics apply entirely
within a single option; in particular, the adding of nodes to the U-Tree from
the ”fringe” only takes place within a given option, since the policy itself
does not represent a tree. But we could clearly imagine handling the policy
itself as the root of a tree, with the options underneath. In such a case, we
could understand there to be two tasks involved in the construction of one
overall tree: the splitting of leaves to add nodes from the fringe, as usual;
and the splitting of leaves to add options. Option nodes are only different
in the sense that once they are decided upon, they will serve as entry points
for the classification of new instances until control is either

1. kicked back to the option above them (or the overall root ”policy”) in
the tree according to β(s) or

2. the option above requests termination ([13], p.19).

In this framework, the issue of learning options becomes the issue of when
to create option nodes. This does not present a method describing when one

17([14]), in their conclusion, note that they intend to approach this problem, at least
within a more minimal scope; but there is no clear follow-up on this promise; ([1]) p.
71, list some of the attempts and make it clear that there are serious limitations on these
methods.

16

should create such an option node and stands as a minor addition to what I
have found in the literature. But I think it at least puts structure around the
problem, which is intuitive to grasp. Moreover, with this structure, we should
be able to see that the treatment of state abstraction and the treatment
of action abstraction will fall within a single framework; which was one of
our desiderata. But naturally it remains to be seen if this framework is
rich enough to encapsulate the instances we are interested in; whether an
apt criteria for adding option nodes can be determined; and whether the
algorithms involved can be efficient enough for practical purposes. At any
rate, this is what I hope to determine through further search of the literature
and my own investigations in reinforcement learning.

4.1 Acknowledgments

In general, most of the first half is distilled from [12], which is the best book
for the basics of RL. The second half largely had [1] as its guide through the
more recent literature. The book Handbook of Learning and Approximate
Dynamic Programming [11] undoubtedly contains much that I should know,
and would likely have been significant to the content of this paper, had it
been available to me earlier.

References

[1] Barto, A. G., Mahadevan, S. (2003). Recent Advances in Hierarchical
Reinforcement Learning. Discrete Event Dynamic Systems: Theory
and Applications, 13 , 41-77.

[2] Bellman, R. (1961). Adaptive Control Processes. Princeton: Princeton
University Press.

[3] Dietterich, T. G. (2000). Heirarchical reinforcement learning with the
maxq value function decomposition. Journal of Artificial Intelligence
Research , 227-303.

[4] Hernandez, N., Mahadevan, S. (2001). Hierarchical memory-based rein-
forcement learning. Proceedings of Neural Information Processing Sys-
tem.

17

[5] Jonsson, A., Barto, A. (2001). Automated State Abstraction for Op-
tions Using the U-tree Algorithm. Advances in Neural Information Pro-
cessing Systems: Proceedings of the 2000 Conference (pp. 1054- 1060).
Cambridge, MA: MIT Press.

[6] Kaelbling, L., Littman, M., Cassandra, A. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence vol.
101 , 99-134.

[7] McCallum, A. K. (1996). Learning to use selective attention and short-
term memory n sequential tasks. From Animals to Animats 4: Proceed-
ings of the Fourth International Conference on Simulation of Adaptive
Behavior (pp. 315-24). MIT Press.

[8] Parr, R., Russell, S. (1998). Reinforcement learning with hierarchies of
machines. Advances in Neural Information Processing: Proceedings of
the 1997 Conference. Cambridge, MA: MIT Press.

[9] Peshkin, L., Meuleau, N., Kaelbling, L. P. (1999). Learning Policies
with External Memory.

[10] Russell, S., Norvig, P. (2003). Artificial Intelligence: A Modern Ap-
proach. Upper Saddle River, NJ: Pearson Education Inc.

[11] Si, J., Barto, A., Powell, W. B., Wunsch III, D. (2004). Handbook of
Learning and Approximate Dynamic Programming. Piscataway, NJ:
IEEE Press.

[12] Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: an intro-
duction. Cambridge: MIT Press.

[13] Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPS and Semi-
MDPS: A framework for temporal abstraction in reinforcement learn-
ing. Artificial Intelligence, 112 , 181-211.

[14] Theocharous, G., Kaelbling, L. P. (2004 (NIPS-03)). Approximate
Planning in POMDPS with Macro-Actions. Advances in Neural In-
formation Processing Systems 16, Vancouver.

18

