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Abstract

In this paper we extend the theory of pattern derivatives which we
proposed in a previous paper. The simplest type of pattern derivative
is a derivative where the payout is contingent on the occurrence (in-
clusive) or lack of occurrence (exclusive) of a given pattern in the time
series describing the underlying asset. If we simplify the underlying
movements using a binomial tree with u(p) and d(down) movements,
then a pattern is a sequence of u and d symbols which may appear
during the life of the contract. In the previous paper we have pro-
posed an efficient algorithm for pricing pattern derivatives, including
those involving more than one pattern. In this paper we provide more
examples of applications, extend our results to more complex sets of
patterns, and prove that the ordinary derivatives can be reduced to
pattern derivatives.
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1 Introduction

A pattern derivative is a financial instrument, specifically an option, which
triggers a payout to the buyer in the event that a pattern in an underlying
variable occurs (inclusive) or fails to occur (exclusive) over the life of the
derivative [3].

The underlying could be the price of a stock and the pattern-clause could
be a set of sequences of up or down movements at finite intervals over some
finite period. For example, if the pattern-clause is {uddu}, and the actual life
of the underlying is, dduuddud, then the inclusive pattern derivative is struck
at t = 7. As with ordinary derivatives we distinguish between American
pattern derivatives, when the payout occurs when a pattern strikes (t = 7),
and a European variety, when the payout occurs at the end of the term after
a pattern has struck (t = 8). Conversely, an exclusive pattern derivative with
this pattern clause would not payout, because uddu did occur.

Pattern derivatives are important both for their theoretical and practical
applications. Theoretically, these derivatives can track any underlying to an
arbitrary amount of precision. This is because if changes in the underlying
price are discretized (binomial approximation) then each possible path of the
underlying corresponds to a pattern in the language of pattern derivatives.

[ADD IMAGE]
This type of derivatives are important in practice because they provide

insurance against specific types of events that cannot be covered by ordinary
derivatives.

In the following sections we provide examples of applications, show how
ordinary derivatives can be reduced to pattern derivatives and generalize
known pricing formula to more complex cases. In particular we extend out
previous results to the following cases:

• Mixed pattern derivatives with include both exclusive and inclusive
patterns.

• Sequence pattern derivatives which strike when multiple patterns strike
in sequence.

• Variable-length pattern derivatives which include patterns of different
lengths.

• Patterns with wildcards, i.e. patterns that may include arbitrary sub-
patterns.
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2 Examples of Application

Consider a grocer who expects to receive ten crates of oranges in every weekly
shipment. If he gets exactly ten, he is able to sell them all without trouble. If
he gets more than ten, he can still make a profit on any number of crates over
ten by applying a discount. However, if the supplier starts to consistently
bring less than ten crates every week, the grocer’s income is in trouble. In
fact, the grocer can quantify that if they bring in less than ten crates a week
for seven consecutive weeks, he will incur in a loss of about $500.

The grocer wants to buy insurance against the pattern described as 7
consecutive shipments below the expected ten crates per week. If we use the
symbol u to indicate a shipment equal to or in excess of ten creates, and the
symbol d to indicate a shipment short of the expected ten crates, than the
pattern that applies is an inclusive ddddddd pattern. Inclusive because the
grocer expects the payout of $500 to compensate him for the occurrence of
the pattern.

One way to solve this problem is by brute force approach. If for example
the life of the option is n days and if the u probability is the same as the
d probability and equal to 1/2 we can easily compute all possible strings of
length n and the probability of finding any substring in strings of length n.
In the table below we computed the probability of finding patterns of 1 and
2 symbols within strings of length n for different values of n:

n u d uu ud du dd
1 1/2 1/2 0/2 0/2 0/2 0/2
2 3/4 3/4 1/4 1/4 1/4 1/4
3 7/8 7/8 3/8 4/8 4/8 3/8
4 15/16 15/16 8/16 11/16 11/16 8/16
5 31/32 31/32 19/32 26/32 26/32 19/32
6 63/64 63/64 43/64 57/64 57/64 43/64
7 127/128 127/128 94/128 120/128 120/128 94/128
8 255/256 255/256 201/256 247/256 247/256 201/256
9 511/512 511/512 423/512 502/512 502/512 423/512

This approach is computationally expensive and grows exponentially with
the size of the pattern. It becomes unfeasible for large patterns. Notice that
the pattern dd is less likely than the pattern ud for many values of n. This is
counter-intuitive since we assumed that u and d have the same probability of
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occurring. The reason for the difference is that one of the patterns overlaps
with itself and one does not. This is the main complication of this problem
and it will be reflected in our analytical solutions.

As another example consider an oil company that owns an extraction well
which normally produces about 1M barrels of oil per week, with a standard
deviation of 100,000 barrels. The company is relying on this well to produce
at the same average levels for the next year. Nevertheless it is possible, that
because of technical problems (operational risk) or because of other problem
with the extraction basin, that the well starts producing less than 800,000
barrels of oil per week for 2 weeks in a row. For the company this would
constitute a loss of $40M. As in the previous case, if we use the u symbol to
represent high production and d for low production (below 800,000 barrels
week), they may want to buy an inclusive pattern derivative with a payoff of
$40M if the pattern dd strikes.

Similar considerations apply to using pattern derivatives to hedge against
market crashes. Note however, that our results in the following sections apply
to patterns in general, not only to the case of runs [WHAT DO YOU MEAN
CASE OF RUNS]. For example, a pattern option designed to hedge against
a flash crash may make use of a pattern du, for d and u suitably defined.
Furthermore, there is no restriction to binary values. Our alphabet may be
arbitrarily large, and this in itself adds nothing in terms of computational
costs for the formulas we provide.

3 Solutions to the Examples

In ref. [3] we derived general formulas for pricing pattern derivatives.
For the inclusive European digital:

C(Qi, n) = Ae−rn/N
n∑

t=k

∑
x∈Qi

P (x, t) (1)

For the inclusive American digital, as:

C(Qi, n) = A
n∑

t=k

∑
x∈Qi

P (x, t)e−rt/N (2)

For the exclusive European digital:
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C(Qe, n) = Ae−rn/N(1−
n∑

t=k

∑
x∈Qe

P (x, t)) (3)

Here A is the payout, e−rn/N the discount factor, r is the risk free interest
rate, N days continuously compounded for the term of n out of N days. Qi

is a list of inclusive patters and Qe is a list of exclusive patters. x is a generic
pattern and P (x, t) is the probability that pattern x occurs exactly at time
t and neither x or any pattern in the respective Q occur before. P can be
computed using the following recursive expression due to ref. [1]:

P (x, t) =
1

Lk

1−
t−k∑
j=k

∑
y∈Q

P (y, j)−
t−1∑

j=t−k+1

∑
y∈Q

P (y, j)εk−t+j(y, x)Lk−t+j

 (4)

The coefficient 1
Lk is the probability of the pattern occurring at t, where

L is the size of the alphabet and each symbol is assumed to occur with equal
frequency. This is multiplied by the probability that the pattern-clause has
not already been struck prior to t conditional on x occurring at t, i.e. 1
- the probability that the pattern-clause has already been struck prior to t
conditional on x occurring at t.

The probability that the pattern-clause has already been struck prior to
t conditional on x occurring at t is split into two terms: the first is the
probability that a pattern in the pattern-clause Q is struck prior to t − k,
where k is the length of the pattern; the second term is the probability that
the pattern-clause is struck at a time between t − k + 1 and t, that is, at
some time after x began. This second term is only non-zero in the event that
there is a pattern in the pattern-clause Q which overlaps with x (including
x itself). The function εi(x, y), is the overlap indicator which measures if x
overlaps with y at index i in y.

Using eq. 2 we can solve, for example the grocer problem of the previous
section. It is an American inclusive derivative, with an alphabet of size 2, a
pattern ddddddd, a term of six months (n=26), and payoff of $500. Using a
discount rate of 5%, we obtain a price for the option of $40.24; which can
be compared to the same derivative but with any pattern of the same length
which does not overlap with itself, say ddddddu, which has a price of $75.19.
Furthermore, while our initial formulas consider only cases where symbols
have the same probability of occurring, we can still use the formula for the
oil case. If the event d has only a 5% chance of occurring, while the ”other”

5



region u occurs 95% of the time, we can price the derivative using the pattern
dd and an alphabet of size 20, with the hypothetical assignment of 19 symbols
to the region covered by u (19*5%=95%), the details of which do not matter
because u does not appear in our pattern clause. We will briefly discuss the
use of distributions other than 1

Lk for the probability that a pattern occurs
at a given time, in our concluding remarks.

4 Mixed-Pattern Cases

So far our attention has been restricted to those pattern derivatives which do
not mix an inclusive and exclusive clause. Furthermore we only supplied the
tools for pricing these derivatives at the very beginning of their term. In this
section we provide formulas for pricing these derivatives at any point during
their term. This allows us to later generalize to the inclusive/exclusive mixed
case.

The full generalization of the basic pattern derivative probability formula
is given as an extension to eq. 4 in ref. [3], section 6, as:
If k < t

P (x, t|w) =
1

Lk

1−
t−k∑
j=1

∑
y∈Q

P (y, j|w)−
t−1∑

j=t−k+1

∑
y∈Q

P (y, j|w)εk−t+j(y, x)Lk−t+j


(5)

else if 0 < t <= k

P (x, t|w) = εk−t(w, x)
1

Lt

1−min

1,
k−1∑
j=1

∑
u∈Q

εj(u, x)ε2∗k−(t+j)(w, u)


(6)

This equation allows for the specification of w, a prefix to the current string.
This prefix allows for the pattern derivative to be valued during the life of the
contract, not just at the beginning. For instance, if the contract mentioned
in the introduction were to be valued at time t = 5, ie. when we already
have the series of events dduud in the term, we could account for the fact that
ud has already just occurred, and we only need an immediate du to strike
the pattern uddu. With this, the contract would be worth more than it was
two intervals before. Because of these properties, in ref. [3], we refer to this
formulas, as the Market Tradable formula and it is critically important to our
generalization to the Mixed-Pattern case.
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The mixed pattern derivative has both an inclusive and an exclusive
clause. It pays if a pattern from the inclusive pattern-clause is struck and
no pattern in the exclusive pattern-clause is struck. The mixed case comes
in both American and European varieties as well. In the American variety,
payout is made when an inclusive pattern is struck, provided that no pattern
in the exclusive pattern clause has been struck (and is not struck simultane-
ously). In the European case, an inclusive pattern must be struck at some
point in the term, and no exclusive pattern may be struck at any point in
the term – so that one must wait until the end of the term for payout and
payout is conditional on no exclusive pattern being struck during the wait.

In the American mixed case, our requirement is almost exactly the same
as the basic American case, except that the strings in the exclusive clause
cannot be matched prior to the occurrence of the given inclusive pattern
being matched either. This implies that, in eq. 5 and eq. 6, we must set
Q = Qi ∪ Qe. Yet, in the valuation formula, we must sum over only Qi.
Assuming Q in P (x, t|w) is defined as Q = Qi ∪Qe, we obtain:

C(n,Q|w) = A
n∑

t=1

∑
y∈Qi

P (y, t|w)e−rt/N (7)

The valuation of the European case is similar, except that Qe cannot be
struck after Qi is struck, because they payout has already occurred at that
time. To account for this, we multiply the probability used above, by one
minus the probability of an item from the exclusive set occurring after t,
conditional on y in Qi occurring at t, namely using y as a prefix.

Assuming Q = Qi ∪ Qe and explicitly labeling the probability function
with a pattern-clause V as in PV (x, t|w) and obtain:

C(n,Q|w) = Ae−rn/N
n∑

t=1

∑
y∈Qi

PQ(y, t|w)

1−
n−t∑
j=1

∑
x∈Qe

PQe(x, j|y)

 (8)

In all out derivations we assumed that the input is consistent, i.e. the
exclusive clause does not contain a pattern also in the inclusive clause.

5 Alternative Underlying Models

We have thus far assumed that the underlying allows for a uniform distribu-
tion across the letters. This means that at any given point in the underlying
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series the probability of getting a given pattern is 1
Lk . This assumption is

simplifying but unnecessary. We can instead use a general function for the
probability of a given pattern pr(p). Using this general function, our formula
from the prior section becomes:
If k < t P (x, t|w) =

pr(x)−
t−k∑
j=1

∑
y∈Q

P (y, j|w)pr(y)−
t−1∑

j=t−k+1

∑
y∈Q

P (y, j|w)pr(y[0 : t− j])εk−t+j(y, x)

(9)
else if 0 < t <= k

P (x, t|w) = εk−t(w, x)pr(x[k−t : k])

1−min

1,
k−1∑
j=1

∑
u∈Q

εj(u, x)ε2∗k−(t+j)(w, u)


(10)

Where we here redistribute the probability to the separate terms, because it
may not be uniform across patterns (Note that what matters in the second
and third terms is the probability of the patterns y ∈ Q and not the proba-
bility of the pattern x.) We also introduce the convention of using indexing
into a pattern p between r and s with p[r : s].

One important instance of pr(p) would be the binomial probability, choos-
ing a suitable risk-free probability for an underlying series of u and d. Using
this model, ordinary European derivatives can be theoretically replicated by
a portfolio of inclusive pattern derivatives under a discrete approximation,
where 1) the length of the term equals the length of the patterns involved
(the patterns are maximal), 2) the payoff is the payoff under the binomial
model for each path of the underlying, and 3) because maximal patterns are
independent, the price of the portfolio is the sum:

Cp(X,N) = e−r
∑

x ∈ XAx ∗ P (x,N) (11)

Where the payoff Ax is made a function of the pattern x ∈ X, P (x,N) is our
standard probability, and X is the set of maximal patterns (length N paths)
which lead to a payoff.

The second and third terms in P (x,N) drop out for maximal patterns,
making the mathematics trivial. Moreover it would be impractical to list out
all paths with payouts for a standard contract. But this is intended to show
that standard derivatives are theoretically a special case of of our framework.
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6 Patterns of Variable Length

Given the extension of the previous section to allow for alternative proba-
bilities, we can incorporate patterns of variable length. In this case, using
the same uniform distribution we used originally, our pr(p) would simply be

1
Llen(p) for varying p.

In this case we assume that the input is consistent as previously described,
but furthermore we require that it is consistent in the sense that exclusive
patterns do not include inclusive patterns as sub-patterns and vice versa. If
the pattern clauses are not consistent, however, they can be made consistent
using the following rules:

• If x is a pattern in Qi and it occurs in another pattern, y, also in Qi,
then whenever y occurs, x will also occur at an equal or prior time, so
remove y (it is redundant).

• If x is a pattern in Qe and it occurs in another pattern, y, also in Qe,
then whenever y occurs,x will also occur at an equal or prior time, so
remove y (it is redundant)

• If x is a pattern in Qe and it occurs in a pattern y in Qi, then remove
y, since whenever y occurs, x occurs at an equal or prior time, and
striking y fails.

• If x is a pattern in Qi and it occurs in a pattern y in Qe, then remove
y, if x does not occur only at the very end of y. (for American Only).

In summary, for any couple of patterns x and y in Qe∪Qi, you can remove
y if x occurs in y, unless x ∈ Qi and y ∈ Qe. If x is an inclusive pattern and
y is an exclusive pattern and x occurs in y, then if x occurs during the term,
you must still determine if y is struck in the future in the European case. In
the American case, it can be removed, unless x occurs only at the end of y.
The apt handling of the special case where inclusion of a pattern in another
pattern cannot be discarded is not addressed by us here.

7 Patterns with Wildcards

Here we introduce methods of evaluating the probability of striking a pattern
when the pattern may include wildcards *, which match any symbol in the
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alphabet. The basic characteristic of patterns involving wildcards are that
the probabilities associated with a pattern involving a wildcard are to be
amplified by the cardinality of the pattern, namely, the number of strings it
specifies. This amplification takes place by subtracting out the appropriate
number of wildcards at the correct locations, as indicated with our use of
c(x) =the number of wildcards in x, below, to get the following formula:
If kx < t, P (x, t|w) =

1

Lkx−c(x)

1−
t−kx∑
j=1

∑
y∈Q

P (y, j|w)−
t−1∑

j=t−kx+1

∑
y∈Q

P (y∗, j|w)εkx−t+j(y, x)Lkx−t+j−c(x[0:kx−t+j])


(12)

else if 0 < t <= kx, P (x, t|w) =

εkx−t(w, x)
1

Lt−c(x[kx−t:kx])

kx−1∑
j=1

∑
y∈Q

εj(y, x)ε(ky+kx−(t+j))(w, y)P (y∗, t−(kx−j)|w)Lt−(kx−j)−c(x[kx−t:j])

(13)
We first address the issue of wildcards by altering Lkx from previous formulas,
to Lkx−c(x), which amplifies the probability of the string by the number of
wildcards (by effectively reducing its length). Note that we introduce here a
special notation: x[i : j] = the pattern x from index i to j (one based). This
is used in the second case to remove only wildcards which lie in the region
which does not overlap with the prefix, with Lt−c(x[kx−t:kx]). It is also used in
Lkx−t+j−c(x[0:kx−t]), which we use in place of Lkx−t+j. This had amounted to
an amplification of the probabilities in the third term. This amplification was
based on the fact that there were kx − t− j terms from y pre-determined to
match, because this was the size of the overlap with x. If there are wildcards
in p in the region of overlap these items are now already pre-determined to
match and need to be removed from the amplification.

Finally, we use the notation y∗ when passing the pattern in the recursive
call. This indicates the pattern y, but with those wildcards in y in the region
of overlap with x, replaced with the values from x. Without doing this, the
recursive call would consider overlaps as valid, which couldn’t really exist,
for such patterns as, e.g. ”bab**aaa”.

One must still be careful with the use of wildcards in the context of multi-
pattern derivatives. If two patterns are used, which resolve to pattern sets
with a non-empty intersection (e.g. ”a*bb” and ”ab*b”), these formulas will
produce a false result, as patterns will be double counted (”abbb”) by this
method. This is a limitation which would be nice to overcome.
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8 Pattern Sequences

In addition to pricing inclusive contracts which rely on the occurrence of a
single pattern among a set of patterns, we can also price contracts which
rely on a sequence of patterns. Conceptually, this can be done by making
the payout of an American pattern derivative another pattern derivative,
and so on in a chain of derivatives which end in a payout if the sequence
is struck. The formula for this can be simplified to a European variety of
pattern sequences to:

C(n, S|w) = Ae−rn/NRS(n|w) (14)

RS(n|w) =
n∑

t=1

(P (S0, t|w) ∗RS−(n− t|S0) (15)

Where here S is a sequence of patterns, S0 is its first element, and S− is the
remainder (the sequence without its first element). RS− is a recursive call,
passing the sequence S without the first element in the sequence. Notice that
RS is 1 if S is empty and n > 0. It is 0 if S is not empty and n = 0. Here
the relevance of overlap is handled implicitly by including the prior pattern
as a prefix in the recursive call. P is our probability function from previous
sections.

9 Limitations

All of our formulas involve a disjunction of patterns which may occur in the
underlying (in the inclusive case) or a conjunction of patterns which may not
(in the exclusive case). These derivatives can be represented as follows:

{I1 ∨ I2 ∨ I3 ∨ ... ∨ Ij} ∧ {¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ... ∧ ¬Ei} (16)

With I the inclusive patterns and E the exclusive patterns. It should be
mentioned that if you try to include either a conjunction of patterns included

{I1 ∧ I2 ∧ I3 ∧ ... ∧ Ij} (17)

or a disjunction of patterns excluded

{¬E1 ∨ ¬E2 ∨ ¬E3 ∨ ... ∨ ¬Ei} (18)
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then using methods similar to the ones we have been considering, you would
run into a combinatorial explosion of cases to consider and the formulas
would be inefficient for large pattern clauses.

In the case of sequences of patterns (inclusive) we were able to skirt
this issue because the order in which the patterns occur is fixed. We were
thereby able to make n pattern overlap comparisons, namely, the first pattern
with the second, the second with the third, etc. If we did not specify a
sequence, but rather a conjunctive unordered set, we would have to make all
possible overlap comparisons (e.g. the third pattern with the first pattern
and from both the left and the right). We would have similar problems with
disjunctions of exclusions.

This seems to be an inherent limitation in pricing pattern derivatives
analytically. Though incidentally, you can price the disjunction:

{I1 ∨ I2 ∨ I3 ∨ ... ∨ Ij} ∨ {¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ... ∧ ¬Ei} (19)

In order to do so, you can use 1−P and substitute the inclusive patterns for
the exclusive patterns and visa versa, within our mixed formula.

10 Conclusions

Pattern derivatives form a very general class of derivatives which include
standard options as a subclass. In this paper we provided some examples of
applications and also extended the theory of pattern derivatives. In particu-
lar, we generalized previously known pricing formulas to the mixed-pattern
case, pattern sequences, alternative underlying probability models, the case
of patterns of variable length, and the case of patterns with simple wildcards.

From here, there are two clear directions we can take. The first direction
is accounting for the risk involved in holding portfolios of pattern derivatives,
which given possible overlap among the clauses between the pattern deriva-
tives derivatives held, is not typically reflected directly in the prices of the
derivatives themselves (the portfolio replicating the standard European Op-
tion was an exception). Generally, the mean value of a portfolio is a linear
combination of the derivatives in the portfolio, but the sigma is greater if
the conditions between the derivatives overlap. Overlap can be avoided by
the method already explained, but this may not always be an option. The
limitation mentioned in the prior section also appears likely to be a limita-
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tion here, in assessing the risk of portfolios of pattern derivatives, as they
essentially involve conjunctions of patterns.

The second is specifying more powerful additions to the language for
defining useful and more complex pattern derivatives. With respect to the
latter, we have made some strides here, but at the forefront is the general
problem of providing the theoretically ideal language for the specification of
pattern derivatives; one which is maximally concise, expressive (amenable
to specifying many and various explicit pattern derivatives) and efficient for
pricing. Specifying such a language and proving its optimality (to some
degree of compromise) are the next step in the theoretical advancement of
Pattern Derivatives.

[TODO: ADD MORE BIBLIOGRAPHY]
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