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Turing and Intelligence
By C. S. Schroeder

If one is going to challenge a well-entrenched theory, it does well to go to the roots.  And 
on the topic of intelligence, those roots are in the work of Alan M. Turing.  Turing is 
most well known for his fundamental work on the nature of computation, but he is also 
known as a father of classic AI.  In this article, I want to explore the insights in two of his 
most famous works, “On Computable Numbers”1 and “Computing Machinery and 
Intelligence”2, and show that assumptions made in the former are smuggled into the 
latter, when they ought not be.

Turing and His Machine
The Turing Machine is Turing’s most lasting legacy.  On the basis of this machine, one 
can define a class of functions, the Turing Computable functions – and because of the 
intuitive plausibility of the Turing Machine as a minimal model of human computers, a 
convincing case can be made that these Turing Computable functions are the class of all  
computable functions.  The class of Turing Computable functions is equivalent to a 
number of other classes differently defined (i.e. Church’s lamda-definable class), and 
some of these were claimed to also characterize the class of all computable functions 
before Turing’s ideas were published3; but none of these other definitions were so 
intuitively convincing – since none of them presented an actual machine which modeled 
the human computer, i.e. a basic model of the computer.  

Turing’s model of the computer is astoundingly simple.  First, there is a tape. 
This tape extends in both directions as far as we need it to go (i.e. we can always add 
more).  On this tape are squares.  In the squares are 0’s, 1’s, or nothing.  The computer 
consists of a head, which reads from the square that it is over.  Depending on the “state” 
of the computer and depending on the value in the square it reads, the computer will do 
something.  What the computer can do is 1) erase the current symbol and optionally write 
a 0 or 1, together with optionally changing its state; or it can 2) move left or right along 
the tape, one square, and optionally change its state.  The relations between observed 
symbols, states, and actions could be specified in a finite table (i.e. a program), which 
consisted of columns symbol, state, and action, where the last would contain a specific 
example from 1 or 2.  The symbols would be 0, 1, and blank, naturally; while the states  
can be labeled simply qn, n replaced with some number (as in q4544), but where, q1 and 
q0 are distinguished as start and stop states visited at most once4.

The input to the machine over some run, can simply be considered the sequence 
of 0’s and 1’s to, e.g. the immediate left of the head when it is in q1 (starts); and the 

1In it’s entirety, “On Computable Numbers, with an Application to the Entscheidungs Problem”
2 The former available in “Collected Works of A.M. Turing: Mathematical Logic” and the latter in 
“Collected Works of A.M. Turing: Mechanical Intelligence”
3 i.e. Church’s, again.  It should be noted, however, that Turing actually framed the question as one of  what 
numbers are computable – i.e. which numbers can have their decimal expansions computed – but it is 
standard to frame the importance of Turing’s insights as regarding computable functions, especially in a 
comparative context.
4 This is a more or less standard presentation of the Turing machine, similar to Sipser’s in Introduction to 
the Theory of Computation, 1997, and not Turing’s itself.



output of some run can be considered the sequence of 0s and 1s to e.g. the immediate 
right of the head when it is in q0 (stops).  One can see, then, how these machines can be 
understood to compute functions, simply reading these sequences as numbers in binary 
notation.  But it must be noted that there is no guarantee that given some Turing machine, 
it will necessarily enter q0 given some input at q1.  All the computable functions will 
have a Turing machine which stops on every such input.  But a given machine may not 
represent such a function.5

Turing and Intuition
The place of intuition in Turing’s argument that his machine aptly characterizes the 
general concept of a computer cannot be overstated.  Turing in fact explicitly says that 
one of his primary arguments for it is “a direct appeal to intuition”.  In this direct appeal, 
Turing reflects on the essential characteristics of a human computer, qua computer; and 
ends up, more or less, with his Turing machine model.  

To start, he argues that there is nothing essential to the typical two-dimensional piece 
of paper that calculations are commonly performed on when done manually, so that, 
rather, we can view the external memory as a one dimensional tape (an assumption that 
was later formally proved correct given the rest of the framework).  He then moves to 
argue for a number of finiteness constraints.  In particular the finiteness of

a) symbols
b) observed squares
c) states (“of mind”)

a) refers to the printable symbols, and is assumed because otherwise “there would be 
symbols differing to an arbitrarily small extent”; which presumably shouldn’t be allowed, 
since otherwise we’d have to rely on the human computer to make arbitrarily fine 
distinctions; furthermore, and as regards to (c), the finiteness of the states of mind that the 
computer can possibly enter into, he says, 

“If we admitted an infinity of states of mind, some of them will be “arbitrarily close” and will be confused.  Again, 
the restriction is not one which seriously affects computation, since the use of more complicated states of mind 
can be avoided by writing more symbols on the tape” (p.250)

It is important to understand that Turing is here firmly focused on the issue of 
computation, and for a human computer to carry out a calculation mechanically, they 
should not be relying on subtle differences in their states of mind, which they may 
confuse.  But despite these limitations, we do not lose any of the expressiveness of 
language, as this can be made up for by stringing together basic symbols; and despite (b), 
that many of these strings “cannot be observed in one glance”, we do not loose any power 
of computation, since human computers themselves cannot rely on such recognition “at a 
glance” for arbitrarily long strings of symbols. 

Having established the finiteness of the ontology, he tries to analyze the actions of 
the computer.  He seeks to reduce these to the most basic actions possible, or what he 

5 All the partially computable functions will have a Turing machine that stops for all the inputs for which it 
is defined.  Note also that finite decimals can be inputs or outputs with the restriction that the decimal be 
separated (e.g. by a blank) from the non-fractional part.



calls the “simple operations”.  He finds two: change of symbol and shift in observed 
squares, which when combined with changes in state of mind, form (quoted from p. 251):

A) A possible change of symbol together with a possible change of state of mind.
B) A possible change of observed squares, together with a possible change of state of 

mind.

Regarding A, we can assume that not more than one symbol is changed, since multiple 
changes can be done in sequence rather than all at once; and we can assume that this 
changed symbol is an “observed” symbol, “without loss of generality”.  Regarding B, the 
distance with which the observed squares can shift along the tape (i. e. the head move) 
must not be greater than some fixed distance, L, according with the limits of the human 
computer shifting their gaze.  

I have moved rather quickly in this section, but the fundamental point is that these 
basic characteristics of the human computer are the basic characteristics of the Turing 
Machine6, and is crucial to Turing’s case that the Turing computable functions are the 
computable functions.

Turing and Recognition
Crucial to understanding my critique of Turing on the topic of intelligence (in the 
following sections) is understanding Turing’s “theory” of recognition as presented in “On 
Computable Numbers”.  I here isolate five primary features of recognitions, as Turing 
understands them there:

6 The Turing Machine is a further simplification, but to no essential loss of computing power.



Recognition is immediate: Turing says, in his words, that there are certain “squares” which 
are “immediately recognisable”.  As I understand this, he is saying that at any given time there are 
certain squares that the computer is aware of, which may contain symbols, and when they do, these 
symbols are immediately recognized, which is to say that this process of immediate recognition is  
not composed of simpler sub-processes.

Recognition is simple: For Turing, each recognition is of some one symbol in our finite  
alphabet – that is, the given markings aren’t recognized as both some x and some y in our alphabet, 
in the way that you may recognize your father as both a father and a man.

Recognition is bounded: This is to say that there is for Turing an event that is the recognition 
of a symbol that happens at a bounded location in space and time; it consists of a symbol with some 
specific continuous bounded space-time location, bearing a certain informing relationship to the 
computer, which is itself at a continuous bounded space-time location.  The informing relationship 
itself is presumably a causal process occurring in space and time, thereby forming the link between 
the two space-time regions and creating one continuous bounded region. 

Recognition is restricted: This is to say that a symbol that is recognized must reside entirely 
within one square.  There is no recognition of “words” composed of markings in more than one 
square, except in an extended sense of “recognition”.

Recognition is binary-valued: Recognition is – for his machine – an all or nothing affair. 
There are not grades of recognition.  Given also the first feature (being simple), we can consider the 
recognition at some time and at some “immediately recognisable” square, to be sparsely populated 
vector, where each location in the vector represents some symbol in our finite alphabet, and one of 
these locations has value “1”, with the rest “0”.

Turing’s assumption at the outset is that the notion of recognition that should be allowed 
in the process of computation has the above features.  And his example from the 
recognition of numbers does well to support his point with respect to computation.  It 
seems clear that for the human computer to do their job and “get it right”, they have to, 
for instance, do digit-wise comparisons of, e.g. 110110101011110110100001010 and 
110110101011110110100001010, and cannot simply recognize them as equivalent at a 
glance.  What is at issue here, however, is the significance of this model to intelligent  
agency.  AI seeks to apply computational systems as models of intelligent agency – doing 
so however, assumes that, at root, intelligence starts with immediate, simple, bounded, 
restricted and binary-valued recognitions.  What reason do we have to assume that it 
starts with these?  

Of course, the proponent of AI would say that “recognition” as we commonly 
understand it is a combinatorial property that emerges from many applications of such 
Turing-recognitions…  This is, I agree, an assumption of classic AI, but I don’t think it is 
one we should make in trying to understand what it is to be an intelligent agent.  Before 
we can come to consider the proper course in analyzing the notion of intelligent agency, 
we do well to consider the course of analysis first set by Turing in “Computing 
Machinery and Intelligence”.

Turing and His Test
In “Computing Machinery and Intelligence”, Turing addresses the question “Can 
Machines Think?”  He finds, however, that addressing this question is hopeless in the 
abstract, so he “refines” the inquiry to instead ask whether a computer could perhaps pass 
a certain test – what we will call the Turing Test.  Turing’s test can be refined to the 



following scenario: you have a person, the tester, who sits in front of a monitor; on the 
other side of a wall from the tester are two cubicles A and B; in one is a person and in the 
other a computer.  The tester can pose questions to either cubicle A or cubicle B, and the 
person or the computer – whichever happens to be in that cubicle - will answer these 
questions (or not) as they can, with a response printed to the tester’s monitor.  The goal of 
the tester is determine which cubicle houses the computer and which the person, based on 
these responses.  If, over many iterations with different testers, the computer is generally 
indistinguishable from the person, we say that the computer “passes the test”, and should 
have “thought” attributed to it, if anything should.

Turing typically faces two types of objections to his position.  First, there are 
objections that machines just can’t think; and second, there are objections that if a 
machine passes his test, it does not follow that the machine can think.  For my part, x 
passing the Turing test would be good evidence that x can think (even if not tantamount 
to it) and would in itself be remarkable feat of engineering.  Moreover, I don’t think that 
we should rule out, a priori, the possibility that there is (could be) a thing that thinks that 
at some level of description can be understood as a machine in Turing’s sense of 
mechanism - and I think that Turing does a good job of replying to such objections.  On 
the other hand, what is astounding to me is the altogether different tack that Turing takes 
in addressing the question of thinking machines from the one he took in addressing the 
question of computation.  In particular, whereas so much of the support for the Turing 
machine being an apt model of the computer was intuitive reflection on what it was to be  
a human computer, qua computer, intuitive support for an apt model of a thinker in the 
form of reflection on what it is to be a human thinker, qua thinker, was cast aside entirely 
for empirical evidence – namely, the ability to pass the Turing test.

One could, of course, imagine Turing’s article being written entirely differently. 
Suppose that Turing actually had some model of a thinker.  He could have proceeded to 
present that model.  After showing us something of what that model could do and how it 
was to be handled, he could have then shifted to providing intuitive support for that 
model.  By reflection on what is essential to human thinkers, qua thinkers, he may have 
even convinced some of us as to the aptness of his model as, e.g. a minimal model of 
what it is to be a thinker.  Of course, Turing had no such model, so he could not write this 
article in the fashion of “On Computable Numbers”, but suppose someone had a model 
and could make such a case for it – wouldn’t that be equal, if not better, support for that 
model of the thinker, in contrast to passing the Turing test?

It can perhaps be argued that what may have held Turing back from coming to an 
intuitively satisfying model of intelligence was his passion for mechanizing any such 
model.  Perhaps, even if at some level of description such a thinker could be understood 
mechanically, we should not restrict our thinking to the mechanistic model when trying to 
uncover what is surely more abstract.  Coming back to where we ended the previous 
section, we can ask, why should we be forced to look within the basic, limited framework 
of Turing-recognitions for a model of intelligence?  Remember, Turing did not argue that 
all basic recognitions must be as described – just the ones relevant to a fundamental 
model of computation.  But nonetheless, the primacy of such recognitions to thinking is 
smuggled in with the restriction to the mechanistic model.  Suppose that reflecting on the 
general nature of recognition, we find intuitive support for alternative models?  Should 
these be cast aside if they may not clearly fit within the mechanistic model?  Perhaps it is 



such reflection that can lead us to the model of the thinker, in the way that Turing was 
lead to the model of the computer.  And perhaps only with such a model in hand, can we 
come back to answer the question: can machines think?

Recognitions and Intelligence
If we allow ourselves to reflect on the nature of recognition in general, we realize that it 
is clearly not binary-valued.  There are certainly cases where we recognize things to 
some degree, and it seems we should not limit ourselves to such binary values when 
modeling intelligence.  Also, if recognition is necessarily simple, certainly more of an 
argument for that needs to be made; it certainly seems I can recognize my copy of 
“Mechanical Intelligence” on the desk, as well as recognize a “red book” on my desk, 
even though they are at the same location.  Do we have any reason at all to assume a 
priori that these recognitions are reducible to Turing-recognitions?  I don’t see any 
reason to make such a claim.

It is important to note that one of the major failings of intelligence computing is in 
the area of pattern recognition.  Researchers have tried repeatedly to get the computer to 
recognize faces and other ordinary things, but only with very limited success.  It is 
perhaps better to assume certain basic pattern recognition abilities in our model at the 
start, for the construction of intelligent systems, and after such a model of intelligence is 
justified by “a direct appeal to intuition” we can move from there to finding the 
technology to support the implementation of such a model.  In particular, I think the 
property of being restricted needs to be reconsidered as well.

The property of being restricted is directly defined in terms of Turing’s squares 
on the tape, but we might understand this to mean that what gets recognized for Turing 
e.g. the symbol, is continuous and bounded.  If we are to recognize patterns, however, we 
may care to lift this restriction.  And on reflection, it seems clear to me that I can 
recognize patterns in experience which are not continuous, e.g. the pattern of a row of 
parked cars, the pattern of windows on the wall, the pattern of stars in the autumn night 
sky, the printed italics word here.  (Furthermore, the property of being bounded may be 
questioned as well, though I will save that analysis for another time.)

Of course, how such an understanding of recognition could be fleshed out and 
then used to understand intelligence in general is a much larger task than can be achieved 
here; but the most important point that can be made here is that researchers of 
intelligence should not be forced to reside within the computational model, when we 
know that model has certain restrictions that we have no reason to believe hold of 
ourselves, as thinking things.  In fairness to Turing, he does not say that we must work 
within this model when addressing intelligence; he is more concerned with the adequacy 
of computational models for implementing intelligence.  Nonetheless, it is the 
computational model which has dominated thinking about intelligence, and I think that 
reflecting on Turing’s method in “On Computable Numbers” we can see holes in the 
justification for this project – namely that that by a “direct appeal to intuition” on what it 
is to be a human thinker, qua thinker, we can see that we should not be restricted to 
primitive Turing-recognitions.

In my next essay, “Recognition and Computation”, I will further analyze 
arguments in favor of the restriction of models of intelligence to computational models, 
and present an example of a hypothetical non-computational process, which may for all 



we know be a natural process, and which may factor into a non-computational 
understanding of recognition.



Recognition and Computation7

By C. S. Schroeder

In my previous article I reflected on Turing’s insights into computation.  I then argued 
that restricting our understanding of intelligence to the computational model smuggles in, 
as  fundamental,  Turing-recognitions,  i.e.  immediate,  simple,  bounded,  granular, 
continuous,  and  binary-valued  recognitions,  where  these  properties  are  defined  as 
follows: 

Immediate: in the sense that the process of recognition that produces these recognitions is 
not composed of simpler sub-processes; 

Simple: in the sense that what is recognized over some region is some one symbol among 
a finite alphabet;

Bounded:  in  the  sense that  the recognition  and what  is  recognized jointly  occur  in a 
bounded space-time region; 

Granular: (previously called “Restricted”) in the sense that symbols from the alphabet 
are what get recognized, and not compositions of such symbols, i.e. no symbol is a proper 
part of another symbol; 

Continuous: this property, not mentioned in the previous article, actually does not appear 
to be part of Turing’s reflective analysis, in that he seems to leave open the possibility 
that a “symbol” could extend over a discontinuous part of the observed region (multiple 
discontinuous squares) at any time8.  Nonetheless, it is a property of the recognitions - 
that there are no such “symbols” - in all accounts of Turing Machines, so we state it here 
as well.

Binary-valued: in that a particular symbol is either recognized or it is not.9

I want to maintain here that we should not restrict our understanding of intelligence to 
such recognitions.  This freedom from Turing-recognitions comes in two parts.  First, we 
should not restrict our thinking about intelligence to the concept of Turing-recognitions, 
because recognition, as we intuitively understand it, is not restricted to such recognitions; 
and a more general notion of recognition can better be used to understand intelligence. 
Second, we should not assume that at root the processes supporting these non-Turing-
recognitions are “really” computational – since we can alternatively accept a basic notion 
of  similarity  (or  dissimilarity)  to  understand  the  process  by  which  such  recognitions 
occur, which may be non-computational.  Before moving to the positive arguments for 

7 © 2007 atheoryof.com, February 15, 2007
8 An example could be a phrase, with squares in between the words which get “ignored” and whose 
contents are not properly part of the “symbol” which is here the phrase.
9 This amounts to a clearer, more refined expression of the definitions given in the last article, and should 
be substituted for those definitions everywhere.



the place of non-Turing recognitions in understanding intelligence, however, we can start 
by deflecting some objections to such a non-computational viewpoint.

Restriction to Computational Models
First of all,  it  does well to note that it  is not necessarily the case that  everything  is a 
computational process.  You will hear the occasional professor proclaim that everything 
is  a  Turing  Machine  at  a  fine  enough grain,10 but  Turing  himself  would  have  never 
suggested  such a  thing,  since  he  thought  the  world,  at  root,  was  continuous11.  The 
question of whether everything, at root, can be understood in computational terms rests 
on more than just whether the world is continuous or not.  But if the world is continuous, 
it  is not properly a computational process, since Turing machines simply do not have 
continuous inputs or outputs.   And it  remains an open question whether  the world is 
continuous, so we can’t say it is computational.

Putting the grand assumption - that everything is a computational process - to the 
side, we might still ask whether intelligence is necessarily computational.  Of course, the 
question  of  whether  intelligence  is  computational  has  two  sides,  as  indicated  in  the 
introduction: 

(a) Must we understand intelligence in computational terms?  
(b) Is any process which has intelligence at root a computational system?  

It should be clear that these are separable; by analogy, it may be that geology can be 
reduced to quantum physics, yet we do not demand that we understand geology in these 
terms, as that would be practically impossible.  

To Daniel Dennett’s mind, in Brainstorms, the answer is yes, at least to the first 
question.  We start with a quote from Dennett in his chapter “Why the Law of Effect Will 
Not Go Away” 

“the supposition that there might be a non-question-begging non-mechanistic psychology 
gets you nothing, unless accompanied by the assumption that Church’s Thesis is false.” 
(Brainstorms, p. 83)

Dennett  here  seeks  to  belittle  the  possibility  of  a  “non-mechanistic”  psychology  by 
maintaining  it  conflicts  with  the  heart  of  the  theory  of  computability.   Remember, 
Church’s Thesis – a.k.a. the Church-Turing Thesis – is just the position discussed in the 
previous article: that a function is computable if and only if it is computable by a Turing 
Machine12; which is hardly subject to doubt in most minds.  A “non-question-begging 
psychology” is just one which “makes no ultimate appeals to unexplained intelligence”. 
So Dennett claims that if you want to maintain a psychological theory which makes no 
appeal to unexplained intelligence and is non-mechanistic, you have to believe that there 

10 In particular, and ironically, John Searle, a staunch critic of AI (Chinese Room), has said that everything 
at root is a Turing Machine – though this can be taken as a hedge on a larger wager.
11 See “All machinery can be regarded as continuous, but when it is possible to regard it as discrete it is 
usually best to do so,” in “Intelligent Machinery” (p. 5), and elsewhere.
12 Or equivalently, expressible in the Lambda Calculus – as was originally stated by Church, giving him the 
foremost title to the thesis.



are  computable  functions  which  are  not  Turing  computable.   Of  course,  it  stands  to 
wonder here what Dennett means by “mechanistic”.  

It seems Dennett means by a “mechanistic” process, just one which is “Turing-
computational”;  yet  to  be  non-question-begging  a  theory  has  to  make  use  of  only 
computable  functions, he assumes; in which case, to be non-mechanistic (non-Turing-
computational)  and  non-question-begging  (computational),  there  would  have  to  be 
computable functions which were not Turing-computable.  But we can take issue with 
this argument at the assumption that to be non-question-begging, we can only make use 
of computable functions.  Perhaps intelligence is best understood by a non-computational 
model (i.e. best modeled by non-computable functions); and perhaps, even at its roots, 
intelligence is a non-computational process.  There would be nothing question-begging in 
maintaining this, provided the functions we use to model intelligence are mathematically 
comprehensible; and surely there are many continuous functions which are.

To be fair to Dennett, he is trying to attack a certain kind of non-computational 
understanding of intelligence.  Dennett views psychological theory, from a functionalist 
perspective,  as  breaking down the  agent  into  distinct  smaller  agents  which carry out 
distinct purposes, and he is concerned that such a theory would be question-begging if it 
relied on the intelligence of the distinct, smaller agents, without a total reduction of their 
intelligence in some way.  Dennett believes the only way to achieve that (presumably) is 
by getting rid of “intentional” language altogether (talk of beliefs, desires, purposes, etc.) 
in the specification of our theory, through an ultimate reduction of such language to a 
machine language.  Within this framework, Dennett is right to stress the need to not beg 
the question, but a non-computational understanding of intelligence is perfectly possible 
even  within  this  framework  –  i.e.  if  the  distinct,  smaller  agents  are  explicable  in  a 
mathematical model which uses non-computable functions, e.g. continuous functions.

Dennett has clearly given us no reason to believe that the answer to question 2 
above is yes.  At root, perhaps intelligent processes in some cases are non-computational 
systems, as Turing would presume.  Furthermore, Dennett has failed in his attempt to 
show that we must understand intelligence in computational terms.  He has shown that 
one way to avoid begging the question is to reduce our theory to a compiled program; but 
he has not shown that this is the  only  way to avoid begging the question; and it is this 
latter claim that needs to be made if we are going to say we must understand intelligence 
in computational terms.  Moreover, Dennett has given us no reason to believe that the 
promise  of a computational  psychology will  be fulfilled.   In what  follows, I  wish to 
suggest an alternative research program.

Pattern Recognition
In Douglas Hofstadter’s behemoth,  Godel, Escher, Bach, it is remarkable that when he 
comes to saying something constructive (rather than merely suggestive) about the nature 
of intelligence he points in the direction of  pattern recognition  (p. 647-676).  This is 
remarkable in that he seems correct in doing so and yet the area of pattern recognition is 
one of the great failures of AI.  As one researcher has written, stating the platitude of 
disappointment: “Computers are notoriously horrible at the kind of pattern recognition 
that comes so naturally to people”13.  Tracing backwards to the root of the problem, I 
think we see that the culprit is the restriction to Turing-recognitions at the start, which 

13  Alan Gilchirst, Scientific American Mind June/July 2006, p.44



any computational  understanding of  intelligence  is  stuck  with.   As mentioned  in  the 
introduction,  there  are  two  reasons  we  should  not  restrict  our  understanding  of 
intelligence to Turing-recognitions.  The first is that a more general notion of recognition 
is intuitively available; and the second is that the more general notion of recognition is 
quite useful.  To elaborate the more general notion, we will address the five properties of 
Turing-recognitions in turn.

Immediate:  The  property  of  being  immediate is  properly  understood  as  a  relative 
property.  Recognition may be immediate relative to our understanding of the agent as a 
whole, in that we take it as primitive within our theory of intelligence; but within an 
implementation  of  intelligence,  there  will  be  sub-processes  to  recognition  which 
nonetheless “make it  up”.  Of course, within a computer,  a Turing-recognition’s sub-
processes are so basic that they can be effectively ignored in our understanding of the 
computer,  whereas  in  the  more  general  notion  of  recognition,  they  are  less  basic. 
Nonetheless,  in  either  case,  sub-processes  exist,  and  whether  the  recognitions  are 
“immediate” will depend on what we choose to ignore.  I want to say that when tackling 
the  first  issue,  that  of  understanding  intelligence,  we can  effectively  ignore  the  sub-
processes involved in recognition;  just as we can effectively ignore the sub-processes 
involved in Turing-recognitions  when trying  to  understand  computation.   And in this 
sense, even the more general recognitions can be immediate14.15

Simple:  The property of being  simple  has no place within the more general notion of 
recognition.  First, it is clear that something, e.g. a collection of markings on a page, can 
be recognized as more than one thing among the many things that it could be recognized 
as, at any one time; just as you can recognize, e.g. in a picture, you and your Dad, and a  
father  and son.  Second, we have no reason to limit  possible  recognitions  to  a finite 
alphabet;  intuitively,  there  is  no  limit  to  the  degree  to  which  we  can  refine  our 
distinctions, so the recognitions that are possible are infinite and beyond.

Bounded: the property of being  bounded would seem to have a clear place within any 
understanding  of  recognition,  since  our  experiences  are  bounded in there  spatial  and 
temporal dimensions – and our experiences, essentially being the markings on the tape 
(the grounds for recognitions and determining where we recognize things), have a clear 
connection to the question of whether recognitions are bounded.  There are many things 
to  consider  before passing judgment  on the boundedness of recognitions,  but  we can 
accept it tentatively within our initial model, if only for simplicity.

Granular: this assumption effectively states, in the case of Turing-recognitions, that the 
markings which can be recognized as a symbol do not form proper parts of markings 
which could be recognized as another symbol.  Of course, in the more general notion of 
recognition, we want to allow that the grounds for one recognition may be part of the 

14 Though an important amendment to this claim will have to be made at a later date when we tackle the 
topic of abstract recognitions.
15 Though note that this provides no indication of what the processes underlying the general notion are; i.e. 
they needn’t be computational processes.



grounds for others, e.g. a phrase can be recognized just as well as the words, although the 
markings that make them up do overlap.

Continuous: this assumption is perhaps the most important to see your way past.  It is 
quite  common to think that  what  gets  recognized is  continuous,  but  there are clearly 
patterns  which  can  be  recognized  which  are  not,  e.g.  planes  flying  in  formation, 
constellations, etc.  In fact, I would go so far as to say that discontinuous regions of any 
form can  be  the  location  of  a  recognition,  provided  they  fit  within  the  “window of 
experience” (boundedness).  Loosening this constraint opens the door for true  pattern 
recognition, as opposed to object recognition.

Binary-valued: clearly, we can have degrees of recognition; and though we are to strive 
for binary-valued recognitions in the process of computing functions, we have no reason 
to  ignore  such  recognitions  in  the  general  model  of  intelligence.   We will  come  to 
understand that degrees of recognition are closely related to degrees of belief, and the 
latter cannot be dispensed with without an elegant reduction.

Of course, the computationalist would seek to reduce the general notion of recognition to 
computation, but I am skeptical that what is lost in the idealization to Turing-recognitions 
can be made up by the complexity of machine states.  This, of course, is part of classic 
AI’s lingering  promise,  but  I  should like to  think that  the proper way to  understand 
intelligence is  by using the general  notion of recognition;  and if  the computationalist 
perspective can’t “keep up” so to provide the basis for engineering the objects of our 
theory, so much the worse for that perspective.  

On the other hand, we can bolster the importance of this alternative framework if 
we can at  least  suggest  a  novel  implementation  of agents  with the capacity  for  non-
Turing-recognitions,  outside  of  the  computational  perspective.   In  the  articles  and 
booklets which follow, I will be developing a general theory of intelligent agency based 
on such recognitions and a few other general notions.  In the next section, however, I 
want  to  construct  a  theoretical  bridge from the general  understanding of non-Turing-
recognitions,  which  will  be  used  in  that  theory,  to  a  scheme  for  their  possible 
implementation outside of the computational perspective.

A Theoretical Bridge
Recognition,  of course,  has its  roots in  similarity.   Generally speaking,  we recognize 
something  as  something  in  virtue  of  the  similarity  it  has  to  the  other  things  in  that 
category.  Unfortunately, from the computational perspective, the success or failure of a 
pattern recognition system in this or that domain is very sensitive to the measure used to 
compute  similarity.   But  if  we  are  willing  to  consider  stepping  outside  of  the 
computational perspective, perhaps we would do better to take the notion of similarity, or 
better, degree of similarity as a primitive notion.  

In taking this  notion as primitive,  I  intend to accomplish two things.   First,  I 
intend to use this notion in our understanding of non-Turing recognitions, and thereby, in 
our  theory of intelligence.   This  idea is  not  entirely new, of course,  since empiricist 
philosophers dating back at least to Hume, have been calling concepts “faint copies of 
sensation”, highlighting the idea that concepts are applied to experience, in a recognition, 



based on a certain similarity to it.  The second thing that is intended, however, is that the 
basic property of similarity serve as a bridge from the general, intuitive understanding of 
recognition to its implementation in a physical system, which almost certainly escaped 
the empiricists.

The fundamental idea of a pattern matching system based on similarity is this: 
there is a field of values, Q, and a collection of entities, C, such that a member of C 
moves to,  is  applied  to,  or  covers  a part  of  Q in  virtue  of  a  similarity  between that 
member of C and that part of Q.  That is to say, it is a basic property of our system that  
the member of C is  attracted to those parts of Q to which it is similar, and in virtue of 
that attraction, moves to, is applied to, or covers that part of Q.  Intuitively, the members 
of C are concepts and the field Q is experience, e.g. our visual experience at some time. 
The idea,  then, is that a member of C, e.g. [Marylyn Monroe] (brackets meaning the 
concept), is a certain pattern of visual experiences, and gets applied to some part of Q, 
our visual experience, when sufficiently similar to it, e.g. when viewing a certain Andy 
Warhol painting, and thereby forms a recognition.

The full significance of such matching to intelligence, as I’ve indicated, will be 
spelled out at a later time.  For now, we are concerned to move, to some extent, from 
psychological talk to talk of a physical system.  It must be said that I do not know of any 
natural  system  which  exhibits  the  properties  described  above;  instead,  I  will  simply 
describe a hypothetical system, which may, of course be a real system yet unknown.  To 
start  to do this, it  is best to move away from such a high level  understanding of the 
entities in C, as ordinary concepts.  Instead, we will hypothesize that the members of C 
are unit-patterns.  

A  unit-pattern-generator  (which  can  be  considered  a  concept)  generates  unit-
patterns.  A unit-pattern is of course a pattern of some actual length and width, though to 
be thought of as quite small.  In an application, a unit pattern gets generated, and then is 
attracted to some portion of a field based on similarity to it.  Roughly, one side of these 
patterns is multi-colored.   This side “matches up” with some portion of the field and 
moves to where there is such a match.  This unit-pattern does not block the qualities it 
matches to, so other patterns can be applied to the underlying pattern as well.  You can 
think of simply, a flat panel television screen facing up from the floor with some static 
picture; these patterns are sprinkled over the picture and fall into place according to their 
similarity to the pixel-patterns on the screen.

Of course, this matching might be looked on as “magic” to some engineers, but 
the basic idea is that  if similarity is a basic natural property then there is no reason to  
believe that matchings between similar things cannot simply, naturally occur.  Of course, 
similarity may only be a property that makes sense in certain domains, but if it ever does 
hold naturally, there is no reason rule out something happening naturally as a function of  
similarity.  And finally, it should be clear that although the structure of Q and members of 
C will have something to say about whether this process can be simulated by a computer,  
even if the field Q and entities C have discrete structures, the matching process is of very 
high complexity, such that for a system to be practical – as we humans are – a natural 
matching process would be welcome which overcomes these bounds.  



Human Computing
One way of viewing the mismatch between intelligence and computation is as a call for 
new  physical  systems  that  can  implement  intelligence,  as  addressed  in  the  previous 
section.   An alternative,  however,  is  to  view the  mismatch  between  intelligence  and 
computation as calling for computational systems which support and use our intelligence. 
The idea of “Human Computing” is one such idea in line with this alternative.

Luis von Ahn, who received a MacArthur Grant last year for his work on Human 
Computing, is the foremost researcher in this field16.  Effectively, Human Computing is a 
means of solving large-scale problems by harvesting the intelligence of people through 
collecting information regarding their responses (“plays”) in a game.  In one such game, a 
two player game called ESP, the participants are shown an image and have to label it in 
the same way as the other player to get points (without any contact with that player other  
than through responses).  The details of the game are less important than the basic point 
here: that one can more reliably categorize digital images by letting the people recognize 
the image than trying to infer it from, e.g. the linguistic context it is embedded together 
with image recognition algorithms; but still, the computer has a role in fixing the rules of 
the game and collecting the data.

Of  course,  once  we  simply  face  up  to  the  idea  that  our  computational 
infrastructure is not going to cut us out of the loop, then can start to build programs which 
truly support,  enhance,  and use our  intelligence,  rather  than trying  to  replace  it.   Of 
course, by this I mean more than a UI design with a series of well-structured menus.  We 
need processes for visualization of data which support our pattern-recognition abilities; 
we  need  interaction  with  visualized  data  so  that  it  can  morph  appropriately  at  our 
suggestion; we need systems that can quickly verify patterns as holding on a global scale, 
when we recognize them on a local scale; and we need to be able to use or communicate 
such recognized and verified patterns effectively.  

All of this is lost on the lazy, who presume the computer will eventually do their 
thinking for them; but it should not be lost on us.  There are many great strides to be  
taken in “Human Computing” – now more broadly construed – which could well define 
the role of the human vs.  the role of the computer,  and thereby help the day to day 
keyboard  laborer  understand  their  role  or  perhaps,  when  it  does  not  involve  pattern 
recognition, better understand how to automate it.

Conclusion
The purpose of this article has largely been to help the reader overcome a conceptual bind 
to the computational perspective.  I have argued that we can free ourselves from this bind 
without contradiction; analyzed the more general notion of non-Turing recognitions and 
suggested we start by using it in our analysis of intelligence; suggested a path toward 
novel hardware which could fill a role that computation may not be capable of filling; 
and suggested we rethink the relationship between human and computer, when it comes 
to the topic of intelligence.  All of this, however, only takes us so far.  What is needed 
now is the hearty explanation of how we may use non-Turing recognitions to understand 
intelligence.

16 See http://www.cs.cmu.edu/~biglou/research.html for Von Ahn’s research, including the very readable 
“Games With a Purpose”.
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To most  people,  there are a great  many processes involved in  intelligence,  of 
which recognition  is  only a  part.   To me,  recognition is  one of only a few centrally 
important ideas in understanding intelligence.  To get a feel for the theory that will be 
presented in the following publications, I will have to give some indication of how it is 
that  recognition  is  connected  to  action.   Without  action,  after  all,  there  would be no 
intelligent  agency.  Remarkably, the theory that I will present can be introduced with a 
quote from a book, On Intelligence, whose topic is more precisely the brain.

“Move your arm in front of your face.  To predict seeing your arm, your cortex has to  
know that  it  has  commanded the arm to move.   If  the cortex saw your  arm moving 
without the corresponding motor command, you would be surprised.  The simplest way 
to interpret this would be to assume your brain first moves the arm and then predicts what 
it will see.  I believe this is wrong.  Instead I believe the cortex predicts seeing the arm, 
and this prediction is what causes the motor commands to make the prediction come true. 
You think first, which causes you to act to make your thoughts come true.”(p.102)

This passage frames the issue in terms of “prediction”, but we will see in the theory to 
come that prediction is just recognition which extends into the future.  Your hand moves 
because it is part of a recognized pattern that extends into the future; and the foremost 
law is that when the pattern involves movement, and the recognition is strong enough, 
then you move.

In the next article I will elaborate on the basic idea of  the pattern-recognition  
agent.  It will provide us the opportunity to reflect on research in machine learning and its 
role  in  a  theory of  intelligence,  which Turing  himself  –  despite  his  central  stance  in 
“Computing Machinery and Intelligence” – had strong intuitions about.



        Recognition and Intelligence17

   By Casey Schroeder

In the previous article I elaborated on the reasons we should not restrict our thinking 
about intelligence to the computational perspective.  I argued for this position from the 
fact that recognition is a general phenomenon which from the computational perspective 
is idealized and minimized to the point of possibly excluding a correct understanding of 
intelligence.  I here want to provide the beginnings of an understanding of how the more 
general notion of recognition can start to provide us with a general theory of intelligence. 
I will do that by presenting the basic components of the pattern recognition agent.  To 
properly understand that agent-model as an alternative to what is currently offered in AI, 
I will start by presenting a standard account of intelligent agency.

Standard Account
According to one popular book in AI18, an agent is absolutely anything which 

“can be viewed as perceiving its environment through sensors and acting upon that 
environment through actuators.” (p. 32).  

An agent then essentially has sensors and actuators and instantiates a mapping from 
sequences of perceptions to actions, by means of these sensor and actuator portals.  Of 
course, by the definition, this mapping may simply be random, but for an agent to be 
considered intelligent, at least this mapping must be somehow “good”.  This goodness is 
embodied by the degree to which the agent approximates a rational agent.  And a 
rational agent (according to R&N) is any agent that always 

“select(s) an action that is expected to maximize its performance measure, given the 
evidence provided by the percept sequence and whatever built-in knowledge the agent 
has.” (p. 36).  

I take it here that “rational” is to be understood as “relatively ideally intelligent” – that is, 
the mapping is ideally intelligent, relative to the rest of the agents design, e.g. including 
their “built-in knowledge” (assumptions) and their performance measure.  Of course, we 
can ask whose performance measure and whose expectation of maximizing it?  

Typically, the “performance measure” in question is understood as the agent’s utility 
and the expectation of maximizing it is understood as computed by the standard formula. 
So, acting rationally at that time would mean having our agents decisions conform to the 
formula for maximum expected utility:

MEU = max(a, ∑(U(o)P(o | a, p, K))

i.e. choosing the action a, which maximizes the sum over outcomes o, of the product of 
the utility of o and the probability of o given a, percept sequence p, and built in 

17 © atheoryof.com
18 Russell and Norvig (2003), Artificial Intelligence: a modern approach



knowledge K.  And the upshot is that the smarter the agent the better the job it does at 
approximating the mapping defined by this function.

There is an important question of how we are supposed to understand where this 
utility function comes from, but it’s typically thought that for the agent to make decisions 
in the direction of maximizing it, the agent has to be “aware of” more or less what it is. 
Similarly, there is an important question of where this conditional probability function 
comes from; and again, it is assumed that the agent has to at least calculate it to some 
approximation on the basis of things he more or less is “aware of”.   So typically, beliefs  
and desires here enter into the equation, where it is assumed that the utility function is a 
function of the agent’s desires, which he is assumed to be more or less aware of; and 
where it is assumed that the conditional probability can be approximated on the basis of 
beliefs, which it is assumed he is also more or less aware of.  

The reality of beliefs and desires and their influence on action, is to some degree 
supported by the ways in which we talk.  It is not unusual for us to explain a persons 
behavior by saying that they did x, because they wanted y, and believed doing x would 
get it for them.  In fact, it seems we talk as though desires and beliefs are both reasons 
and causes for our actions19; and that this dual nature allows this model of the intelligent 
agent to serve both a normative and descriptive function which might be seen as unique. 
This model of the intelligent agent, as one which does their best to maximize their desire 
fulfillment on the basis of their beliefs and percepts, is, I believe, the classic model of the 
intelligent agent.

Though such agents are not wedded to a computational view of agency, much of the 
support for this theory comes from its integration into a computational picture which has 
seemed philosophically appealing within the later half of the twentieth century.  In 
particular, the “propositions” which are the contents of the propositional attitudes 
(beliefs, desires, etc.) are represented by symbols – or rather, compositions of symbols, 
i.e. sentences.  These symbols are understood to have their contents fixed externally in 
virtue of correspondence or causal connection with the world (an issue which it is thought 
we have to face any way in the philosophy of language20).  To have a particular attitude 
toward such propositions, is just to have the symbols which represent them in some 
location (black box) or in some role (functional role) within the architecture.  The process 
of decision making, then, is understood as simply a form of computation over these 
symbols, analogous to logical derivations, of what action should be carried out.  

The support for the classic model can be summed up as follows:

1. Its integration with a well established normative notion of rationality (MEU)
2. Its plausibility from the point of view of linguistic reflection and ordinary explanation 

of human action.
3. The appealing philosophical picture of the mapping of the agent to computing 

machinery.

But there are some very good reasons to question this view of agency as well.  Some of 
the more important criticisms are:

19  Davidson
20  Putnam



C) The biological/neurological unreality of beliefs and desires (Churchland, 
“Eliminative Materialism and the Propositional Attitudes”).

D) The limitations on instantiating such agents because of the constraints on 
computation, and in particular on computing probabilities (e.g. calculating the 
conditional probabilities within the popular framework of Bayesian Networks is 
NP-Hard (Pearl)).

E) The simple lack of fruit (applications) born from this conception of intelligence 
over the past half century.

Of course, without an alternative picture that provides the hope of achieving what the 
classic picture promised, the above criticisms might seem simply a hollow fact of life.  I 
believe there are three things which an alternative needs to provide (abstracted from the 
support for the classic model above):

d) Integration with a normative notion of intelligence/rationality.
e) Intuitive plausibility.
f) A framework for understanding human action.

In fact, I believe that 2 is the bridge between 1 and 3.  Without intuitive plausibility 
there is no ground on which to connect a descriptive theory as provided in 3, to a 
normative notion as provided in 1.  This classic model of agency has its point of contact 
with intuition, at the linguistic level.  When I reflect on the way I operate, I do indeed say 
that I “desire” that and “believe” this.  And under the assumption of twentieth century 
philosophy that language was a clear window to the mind, we arguably had some 
intuitive plausibility for the reality of belief and desire.

But when I reflect on my experiences and thoughts, and how they lead to actions, I 
do not witness any such interplay of propositions which I have the attitudes of belief and 
desire toward.  For me, this has always been so.  When I was introduced to the idea of the 
“propositional attitudes” when I was 20, I thought then and there that people were taking 
their words too seriously.  And I still do.  Luckily, a theory of agency is not wedded to 
primitive beliefs and desires, nor even to an obvious mapping of beliefs and desires to the 
model.  A theory of agency, to be a proper theory of agency, must provide an 
understanding of the reasons - both normative (1) and descriptive (3) - for action, which 
is comprehensible from the subjective point of view (2).  And to attain this, we will be 
taking for our basic intuitive notions: concepts, recognitions, experience, and values; 
which I believe to be more comprehensible - from the subjective point of view or 
otherwise - than beliefs and desires.  In the following sections I will elaborate on these 
elements.

The Spacious Present
Experience has a spatial-temporal structure.  In fact, I assume here that our experiences 
have a spatial-temporal structure in virtue of occurring in a space and time, namely, the 
space and time of experience – which is to be understood here as entirely intra-subjective. 
Our experiences, as I understand them, are qualitative as well, but nonetheless, they can 
be represented mathematically.



The three domains that we will concentrate on here and in future works are the 
domains of visual, tactile, and kinesthetic (motor) experience.  We idealize here away 
from scent, hearing, taste, and any other sense-domains one may wish to posit; we 
assume here that these three domains of experience occur within the same space and time 
(i.e. the space-time of experience)21; and we will understand these domains as having a 
very similar structure, i.e. I assume that experiences within these domains are to be 
modeled as surfaces with continuously varying quality-values over their points, where 
these quality values can be modeled by a continuous interval, e.g. (0,1).  

This much, I hope, is fairly straightforward.  There is, however, a part of my 
formulation which takes some getting accustomed to.  Although it may be common to 
think of experience as not temporally extended, i.e. that our experiences occur in three 
dimensional space, and simply change with time, I maintain that there is a time dimension 
to experience as well, i.e. that our window of experience is at least to some extent, 
extended in time – the so-called spacious present.  To stoke your intuition: think of such 
experience as “short-term experiential memory”; as when one shuts their eyes and 
continues to have the prolonged experience, until it fades outside the experiential 
window.  This, on my view, is no less experience, and moreover, is assumed to occur 
even if new data is coming in, per usual.  The idea that experience is extended in time is 
very important to my formulation of the pattern-recognition agent.22

Pattern Recognition
I assume that we recognize patterns in experience.  A pattern in sensory experience can 
be thought of as any collection of qualitative surface points in experiential space-time.  In 
particular, these experiences needn’t be from one continuous region.  They can be from 
multiple continuous regions.  And there is no ‘primacy’ of patterns that are in one 
continuous region or of one quality.  All patterns are treated as equal – ontologically and 
epistemologically speaking - i.e. ‘object’ patterns are just patterns, on equal footing with 
the pattern of all wave crests in a view out to sea, and both are recognizable.

When we recognize these patterns, they are recognized as a type.  And the result of 
this recognition of the pattern as a type is an entity we will call the recognition.  A simple 
example is my recognition of one of the patterns in my sensory experience as of type 
Mug.  We say, the pattern is recognized, but it is recognized as a type Mug-pattern, and 
the result of this is an entity the recognition of a Mug…  But the structure of the blue-
white-silver-black pattern is not all there is to the recognition in this case.  In particular, 
the space of the recognition extends in experiential space-time to places I can’t “see”, 
behind the qualitative surfaces.  In the case of object recognitions, I assume that the 
recognition has the spatial structure of what we would call the object itself, only in  
experiential space.23  Such a basic idea that recognitions have extent greater than their 

21 Even though in the final analysis one must admit that these domains can occur in separate space-times.
22 I have labeled my claims as assumptions, since in most cases it is not possible to argue for them; in fact, 
unless someone points out an inconsistency or a more appealing alternative, all I can say is that you are not  
like me.  Despite the stubbornness on this point, I know that this is in every way an idealized model and that 
there is almost certainly a better formulation available.  But the key points are that experience does have a 
structure of its own, that this structure can be mathematically modeled, and we can use this model as an 
intuitive explanatory foundation in the analysis of the intelligent agent, as we shall see.

23 Note that I here am remaining neutral as to the existential status of ordinary objects



experiential surface is well established by gestalt phenomena.  But this doesn’t prevent us 
from simply recognizing the surface, which doesn’t have a volume.  

I assume that these recognitions, moreover, have a location in experiential space and 
time.  In most cases, it is fixed (though perhaps not completely) by the location of its 
corresponding experiential surface – though possibly of greater extent (as in my mug). 
Nonetheless, the recognition is a matter of degree; and moreover, the location of the 
recognition may be fuzzy.  We may recognize something to some degree and in such a 
way that its location isn’t discrete, but graded within experiential space-time.  But the 
points in this location have a character which constitutes the recognition as a type.

To reiterate: any pattern that fits in the window of experience can be recognized, 
which is to say that any subset of surfaces in experiential space-time fulfilling the  
constraints in the previous section is a pattern and can be recognized…  Such a pattern 
can be through space and/or time; it can be a disjoint set of surfaces or one continuous 
surface through time.  The patterns are recognized as a type.  And the result of this is a 
recognition that has a degree and a (potentially fuzzy) location, with a character unique 
to the concept.

Concepts
I assume that recognitions occur in virtue of the application of concepts.  Concepts are 
the bridge from sensory experience to recognition.  They can for starters simply be 
thought of as a function producing a recognition of some type and to some degree at some 
location in experiential space-time, given certain experiences.  For now we can assume 
that we are given a working set of such concepts to apply, and we can ask what gets  
recognized?  It is my intent here to understand our recognition states as composed of 
applications of individual concepts.  As such, we need a theory of individual concepts as 
well as a theory of how these distinct concepts come together to compose our recognition 
state in applications.

Any distinct concept, C, is defined by a function of the sort C:SP->R.  Where SP is 
the set of all sensory patterns and R the set of all recognitions.  But there are certain 
restrictions on which functions represent concepts.  

First, it is to be understood that the recognitions in R that are produced by a particular 
concept, C, have a distinct character, unique to the concept in question.  

Second, for any s in SP and any r in R, such that C(s)=r, r covers the area of s, i.e. the 
points in experiential space-time covered by a sensory pattern, s, are among the points 
covered by a recognition, r, if C(s)=r, for some C.  

Although this second constraint clearly holds of most of our recognitions, it is 
nonetheless debatable.  One might site, for instance, this scenario: you just ducked around 
the corner on the city street and you wait in order to startle your friend, just for kicks, as 
she walks by.  You see her shadow approach, and it is her – almost unmistakably.  In this 
case, we might want to say that you recognized your friend in virtue of a pattern in SP, 
which is not in the location of your recognition of her itself…  Of course, there is some 
truth to that.  But as we will see, we can understand concepts and their recognitions under 
the constraint given and still account for the recognition in this sense.  As it will turn out, 



this kind of “recognition” of your friend will be understood in terms of the recognition of 
the shadow as part of a pattern which your friend is also a part; and as we will see in later 
developments, it makes the life of our agent so much easier as to seem almost essential 
that we understand it in this way.

Of course, understanding individual concepts in this way, we are left with some 
questions for the bigger picture.  And in particular, given a store of concepts, we have to 
be concerned with the composition of these applied concepts to reach an overall 
recognition state: i.e. given a store of concepts, what gets recognized, and according to 
what laws?  There are two ways of answering this question.  There is a normative way, 
and a descriptive way.  From the normative perspective, we ask, what is ideally  
recognized given our concepts?  From a descriptive perspective we ask what would we 
really recognize, given our concepts?  

Given a set of concepts, we can take a stab and say: we would ideally maximize our  
overall strength of recognition while still remaining consistent.  The basic idea is that 
some recognitions, though applicable by the function that is the concept itself, would 
nonetheless conflict with other recognitions which may be stronger taken as a whole; the 
set of concepts that apply with the most overall strength will get applied ideally…  In real 
applications, on the other hand, it is likely that the concepts that we try to apply are to 
some extent ordered (though perhaps with an element of randomization) by their 
significance.  As we try to apply them, when we get a match, we recognize, and then fill 
in our recognition state around what recognitions came before - such is the popular 
concept of framing.  This is just a sample explanation of how real recognition might 
work; an example of how we might work to fill in the human agent model.  

There are a few things that the above preliminary considerations ignore.  Most 
importantly: what determines the strength of a recognition?  What determines which 
concepts are relevant at any given time?  How and when do we form concepts?  Before 
understanding the full story, we must consider the importance of values within our 
agents.  

Value State
It is common within psychology and philosophy alike, to assume that what is of positive 
value is pleasure or happiness and what is of negative value is pain or unhappiness. 
Maximizing rewards while minimizing punishments is then the goal of the game of life; 
and acting rationally is doing this to the best of one’s ability.

Learning to best act in these ways given past rewards and actions is the subject of 
reinforcement learning, a sub-topic of AI which has its roots in Turing’s positive 
intuitions about intelligence.  But mistaking feedback, positive and negative, for the value 
of the state, is to mistake an artifact for its ends.  To make the point that what is of value 
is the state we are rewarded or punished for achieving or being in, rather than the reward 
or punishment itself, it does well to consider two distinct types of states, which I will call 
value states.

First, suppose one value state simply consists of one variable.  The feedback we 
get depends on the value of this variable; the greater the value the greater our reward; and 
if we maintain the value at a high level, we will get the continued high reward.  In such a 
case, it seems quite clear that what we should do is increase this variable, all other things 
being equal.  But we may ask why should we increase this variable?  Is it because its 



increased state provides us with more reward?  Or is it because the increased reward is  
an indication of the value of the increased state?  Considering such a case by itself, it is 
not clear to me where the value should be thought to reside.

However, consider a second example.  This value state also consists of one 
variable, but in this system, you are rewarded for moving the value of the variable close 
to a particular value.  If the value strays above or below the target value, you are 
rewarded for acting so as to change it to a nearer value, and rewarded proportional to the 
difference in proximity.  But by simply maintaining a value close to the target you are  
not rewarded or punished at all.  In such a case, it seems to me that what should be 
considered of value is the state of the variable, and not the feedback – since the feedback 
is clearly serving as an indicator of the positive value of having the variable close to that 
value.

Of course, we can treat both the first and the second case uniformly if we just 
admit that it is in both cases the state which is of value, rather than the feedback.  This 
distinction between the value of the state and the role of feedback is crucial to a correct 
understanding of the pattern recognition agent.  

The Basic Pattern Recognition Agent
We are now in position to appreciate the basic pattern recognition agent model.  The 
basic understanding of our agent is this: the agent acts randomly within their scope of 
possible movements; when a satisfying event occurs, they construct a concept of their 
experiences – including the experiences of the random motions that took place - leading 
up to that event; at a later time, if they have similar experiences, and are in a similar value 
state, they will recognize the pattern in experience (through the application of the 
concept) and act in accordance with the recognition.  Note here that I’m claiming the 
action experiences themselves are part of the pattern recognized and it is in virtue of this  
recognition that the action takes place at the later time.

The strength of these recognitions will have a lot to say about which among the 
possibly many conflicting actions will be carried out; and that strength will have a lot to 
do, not only with the fit of the concept to the current experience, but with the strength of 
the concept as determined by the prior feedback and the similarity of the current value 
state to the value state the agent was in when that pattern was previously successful.

Of course, with the recognition of a pattern, you have a recognition which may 
extend outside of experiential space-time.  Such is to be expected in any pattern 
recognition agent.  Experiential space-time becomes a sub-region of recognition space-
time.  And as the patterns involving actions flow into experiential space-time, those 
actions are carried out non-randomly. With this understanding, we can see that 
recognition, prediction, and intentional action are all unified.

Though some would take issue with this use of “intentional”, it seems clear to me 
that such patterns involving action extending into the future and flowing to the present is 
much in line with the conception of intentional-states put forth as independent 
psychological states by Bratman24, though he works within the more classical framework 
of propositional attitudes.

This leaves us to state how we are to understand the more classical psychological 
states of belief and desire.  Understanding these, as well as many other things, within the 
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framework of pattern recognition agency will have to wait for a fuller treatment.  I plan to 
start with that fuller treatment in my next article, where I will provide an idealized and 
minimized  model  of  the  pattern  recognition  agent  for  the  sake  of  simplifying  some 
complex issues;  and consider  how this  idealized  agent  compares  with  some standard 
reinforcement learning agents.



Pattern Recognition Agency25

By C. S. Schroeder

Agency as I have begun to describe in previous essays can be idealized into a simple 
model.  This model will naturally have reduced complexity compared with human 
agency, but will contain many of the most important elements of agency in general.  Our 
experiences, of course, involve a four-dimensional space time structure, which we 
assume corresponds, to some extent, a four-dimensional space time structure “in the 
world”.  We can go a long way toward simplifying our issues if we reduce the 
dimensionality of our agent, and assume that our agent’s experiences are one 
dimensional.  That is, like ourselves, our agent has a temporal dimension to his 
experience, but unlike ourselves, our agent does not have a spatial dimension to his 
experience.  He is, what I call, the pinhole agent, for our agents experiences are similar to 
what ours would be if we were to look through a pinhole; we would see one color at a 
time and these experiences would eventually move outside of our experiential window 
with time.

We will assume that our pinhole agent experiences colors and motion qualities, 
which because they may overlap in experiential space time, can be understood to occur at 
each point in experiential space-time, i.e. at each present moment a new quality pair 
<color, motion> enters our agents experiential space-time.  We can do ourselves a favor 
now if we simplify things further by starting with the discrete pinhole agent.  The discrete 
pinhole agent has a finite set of possible qualities it can experience, instead of the 
continuum that seems subjectively possible for us.  So in particular, we assume the 
following qualities are possible:

Colors = {R, O, Y, G, B, I, V, null}
Motion= {L, R, U, D, S, null}

That is, we consider the colors of the rainbow, plus null; and we consider left, right, up, 
down, and stay to be the motion qualities, plus null.  Furthermore, the discrete pinhole 
agent experiences these qualities in incremental space-time; so, instead of having an 
experiential space time like this:

______________

Our agent has one like this:
_ _ _ _ _ _ _ _ _ _

Where the qualities enter into this experiential space-time pairs <color, motion> at a time.
Now, you can imagine our agent as being in the following world: The world is 

laid out like an infinite chessboard, only instead of white and black squares, our squares 
can be any of the colors from the set above in any pattern whatsoever.  When our agent is 
over a square, our agent experiences the color in the square at that time.  Now this world 
is not restricted to being static.  That is, even if our agent does not move off of his square, 
it may change at the next increment; and if he does move, the square he moves to might 
be different than what it was a few moments before.  In fact, the world, within these 
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constraints, can be absolutely any way whatsoever possible.  It may be random, it may be 
strongly patterned, it may be a never ending continuous sea of orange…  

To clarify, our motion experience at a time is the quality from the motion that was 
decided upon leading up to it.  So if our agent “decides” to move left during real time r0, 
then the motion quality at time s0 will be L at r1.  This also introduces the convention 
that we follow here, that the subjective present will be fixed with the label s0, and recent 
past experiences will grow in there s(t) labels with distance from the present, until they 
cease to be within the experiential window; e.g. in the above, they could grow to s9, until 
they drop off.  But of course, in the whole window of experience exists at every instant of 
real time, and it is a substantive question if, e.g. the value of s0 at r(n) must equal the 
value of s6 at r(n+6), as we assume it usually does; as we shall see that this is not 
answered straightforwardly in the affirmative.

But before we get to this or other matters, we must specify something that matters  
to the agent.  We will assume that our agent’s motives, again unlike our own, can be 
represented by a single, one-dimensional interval, where its current state is simply 
represented as an index into this interval.  We can understand this interval as being 
carried around with the head of the agent, or alternatively, we can understand this interval 
as represented on a parallel board, which can take various shades from black to white. 
However it is understood, we can say that this index can fluctuate, again, in absolutely  
any way whatsoever possible.  That is, it may correspond in some way to the world of 
colors and motion, or it may not.  Though the continuum from black to white does fine 
conceptually, it will do well for representing this interval if we give it numerical labels; 
so, 

Dimension of Concern (DOC) = [-1, 1]

a subset of the real numbers.
Now, the existence of this dimension of concern in no way indicates how the 

agent is concerned with it.  That is, does it “want” it to be white or black?  Or does it 
“want” it to be middling gray?  Of course, what it would take for us to legitimately say 
that the agent “wants” it a certain way is simply for the agent to be as though designed to  
achieve that state.  So in order to engineer the agent so to “want” a particular state, we 
must have some idea of what the agent should do to attain a particular state, and then 
describe it in such a way that it to some fair degree does what it should.  But this seems to 
be a remarkably hard thing to do when you do not know in advance what the world of 
color, motion, and motive (DOC) is like!  Since, after all, the correspondence of motive 
to color and motion may be entirely random.

We will design our pinhole agent to “moderate” his dimension of concern, i.e. the 
closer the agent gets his state to the middle, the better.  But we must make clear that our 
agent does not “know” that he wants to moderate his dimension of concern.  And in fact, 
he doesn’t experience this dimension of concern in the way that he experiences the colors 
and motions.  The agent is quite simply moved by his dimension of concern – i.e. he 
changes his behavior based on the index into this dimension (in ways that will soon be 
made clear).  He can only come to learn about this dimension through the effects of the 
feedback that it provides; and he only “knows” anything about it in a higher-order 
cognitive sense, much further down the line.  



We suppose that our index starts off at the dead center, 0, medium gray.  What 
should the agent do?  We would probably say that the agent shouldn’t do a thing.  But he 
does – and for that, he’s less biased than us.  The agent, having no clue as to the world he 
lives in, has no reason to stay any more than he has to move in some direction; and when 
the agent has no reason to do something, he does anything.  That is,

To the extent that an agent doesn’t have a reason to act, that agent (at least to that  
extent) acts randomly.

This is a substantive hypothesis about agency in general - which, by the way, is not meant 
to indicate that the agent will never have a reason to act randomly, in which case the 
agent may act more random (i.e. it will turn out false that, to the extent that the agent acts 
randomly, that agent necessarily (at least to that extent) does not have reason to act.)  

Of course, if the agent has no a priori reason to act in some way, what can give  
him a reason to act some way?  The idea is simply this: the agent acts randomly within 
their scope of possible movements; when a satisfying event occurs, they construct a 
concept of their experiences – including the experiences of the random motions that took 
place – “leading up to” that event; at a later time, if they have similar experiences and 
recognize the pattern in experience through the application of the concept, they will 
thereby have a reason to act – they will have reason to act in accordance with the pattern 
because that pattern is linked with satisfaction.

It is open to argument whether such recognized patterns really give any reason for 
action at all.  If it’s possible that motives don’t correspond in any way to motion and 
color, then what reason does the agent have to act in a way that was successful in the 
past?  What is important to understand here – so I will reiterate - is that our agent is in no 
way aware of his motivational state.  The agent does have qualitative experiences of his 
motions and colors, but he in no way experiences “qualities of satisfaction” - the mythical 
pleasure and pain.  For all the agent can tell, the satisfaction “was”, “came from”, “exists 
in” the color and motion experiences he was having at the time of the satisfaction.  We 
can then understand the reason an agent has to “act in a way that was successful in the 
past” like this: the satisfaction that our agent had at some point leading to the formation 
of the concept occurred at some real time r0.  At this real time, our agent was 
experiencing all color and motion qualities from s0 to s9 in subjective time.  Our agent, 
therefore, has no reason to associate the satisfaction with some particular quality or 
quality pair in s0 to s9, so he associates it – at least initially – with everything in s0 to s9 
at that real time.  Our agent, therefore, has a reason to carry out the actions embedded in 
the recognition, because it is the only way to fulfill the recognition, and recreate the 
experience that he has every reason to assume is the satisfying event itself.  The “goal” in 
this case, is not what happened at s0 when the satisfaction occurred in real time; our 
agent has no reason to parse that out as of “real value”; rather, the agent takes everything 
that occurred for him at that real time as what is significant, for he knows no better – if it 
can at all be said he’d be better off for knowing - and has nothing else to go on.  

Even if the agent has a reason to act some particular way, however, it doesn’t 
mean that he should or will act in that way.  First, it will be clear that different 
recognitions can give reasons for different and conflicting action.  Second, despite having 
a reason for action, there remains a random factor, which decides among the actions to 



take up; and this random factor, although giving greater weight to actions that have a 
reason to be carried out, nonetheless, will still give some weight to the other actions that 
are possible.  We will now try to present the mechanisms by which our agent operates.  

Presentation of Discrete, Pinhole, Pattern Recognition Agent
Crucial to our understanding of agency is three types of entities: experience, concepts,  
and recognitions.  All three of these are represented by a more general entity: patterns. 
Patterns, for this agent, are as you may expect:

PPPPPPPPPP

Where the P’s are to be replaced with pairs <color, motion>.  The inclusion of null in the 
above definition of the color and motion qualities is to indicate that the patterns may be, 
as it were, incomplete.  They may be, for instance, of the form (ignoring motion for the 
moment)

BR GIRO VV

Where we will understand the blank-space as null and null as blank-space.  An 
experience, as I typically understand it, is a complete pattern; but a concept or recognition 
need not be.  We will represent the set of current concepts the agent has available as C 
and we will represent the set of current recognitions as R. 

Our agent has three basic operations that he carries out: store, match, and decide. 
The store operation takes a pattern in experience and stores it as a concept in C.  The 
match operation takes patterns in C and determines their applicability to current 
experience.  If they are applicable, it results in a recognition at the location it is 
applicable.  The decide operation takes all the recognitions in R, and chooses an action 
based on the strength of those recognitions and a random factor.  There is in this, 
however, one basic thing I have left out which is important to everything so far described, 
and that is motive, i.e. dimensions of concern (DOC).  

To start, DOC is relevant to the store operation: suppose you experience 
something; this in itself is not sufficient for the application of the store operation; to 
apply store, there must be some incentive.  The incentive comes when there is a change in 
your DOC.  If your DOC is indexed at -.5 and jumps from there to 0; then this is a fair 
indication that you should take note of what just happened.  This “taking note” happens 
by applying store.  But store doesn’t just take whatever pattern is in experience and toss it 
onto a heap of other patterns that are in C; rather, it takes the pattern and stores it along 
DOC at -.5.  Why the pattern is stored at -.5 and not simply thrown onto a heap is that our 
agent is not always looking to match this pattern, but rather, only when he is in a position 
with respect to DOC that he was in before, when the pattern was relevant – in this case, 
-.5.  

This brings us to match.  The match operation is applied over some concepts at 
each increment of time, but not every pattern in C is tried for a match - only the patterns 
in the neighborhood of the current index of DOC.  So in particular, if at some later time 



we were again at DOC index of -.5, then we would likely try to match the pattern we 
stored at -.5 to the present experience.  If DOC was at .5, that pattern would likely be 
ignored.  When a match occurs, a recognition is created.  The recognition has the same 
pattern as the concept, and is fixed to the location where the match occurs.  So in 
particular, if the current experience is (ignoring motion and fixing s0 at far left):

RGIVOYRROV

There may be a match between it and a concept:

VRYGVGRGIV

at the overlapping region RGIV.  In this case, the recognition would be fixed to the front 
portion of the experience of RGIVOYRROV, at RGIV, and the VRYGVG portion of the 
recognition would extend beyond the present and outside of experiential space-time. 
This extension beyond the temporal bounds of experience I take to be an essential 
component of any intelligent agent.  We will say that these extensions occur in 
recognition space-time, which has experiential space-time as a sub-region.  It is important 
to note that the strength of a recognition is as much a function of its fit with present 
experience as it is with its proximity to the current index on DOC.  But moreover, it is a 
function of its relevance – a measure that will be made more precise, but can be thought 
of as the count of the pattern at that index (i.e. how many times that pattern was stored). 

Exactly how close a stored pattern needs to be to the index to be considered, and 
how to grade the notion of proximity among the patterns that are considered, will be 
considered shortly; for now, we simply state that the patterns in this neighborhood are 
said to be in the working set, WS.  If the proximity to the index is measured as p between 
0 and 1; the degree of match - similarity - between the pattern and the experience at some 
point is s between 0 and 1; and the relevance r, is unbounded; then we can hope to 
calculate the strength of the recognition as p x s x r.

The decide operation is applied after store and match, during each increment of 
time.  While there are many methods that can be used for the decide operation, one 
simple method is to take R and conduct a weighted lottery, selecting an action to follow 
at that point in time; though with “random” as a separate option, where its selection 
indicates the selection will be made at random without weight.  It is a crucial issue to 
determine the probability with which “random” gets selected – or uncertainty, u.  I tend 
to think of it as a function of the density of the patterns along the DOC.  We will have to 
consider how the proximity (p), similarity (s), relevance (r), and uncertainty (u) are 
determined – so now we turn to issues regarding these measures.

Issues in Pattern Recognition Agency
A number of issues in pattern recognition agency are closely tied to issues in 
reinforcement learning.  In fact, nearly every issue in reinforcement learning has a 
correlate in pattern recognition agency.  We will start by addressing these similar issues.

What I have called the “relevance” of a pattern is closely related to what is 
considered the value of a state in reinforcement learning.  And the question of how to 



compute the value of a state in reinforcement learning is the central question of that 
discipline.  So we can expect to get some help from this theory when we ask the question: 
exactly what feedback is necessary for a pattern to be stored with some relevance and 
how is it we should change the relevance of a stored pattern?

On the question of which pattern should be stored with some relevance, we can 
assume simply that there is a threshold to the value attributed to it for it to be stored – so 
the question is how do we determine and change this value with time is the central 
question.  We assume that the initial relevance of a pattern is proportional with the 
reward it is associated with – but the reward associated with the pattern directly, i.e. the 
reward achieved when the pattern was experienced, is not all there is to the relevance; for 
if it were, the relevance of the pattern would ignore, for instance, what might happen 
immediately following this reward, e.g. persistent high negative reward.  Effectively, 
what we need to take this into account are eligibility traces, which determine how the 
reward is propagated back through previously experienced patterns – influencing its 
relevance26.  In general, we will assume that the reward will be propagated to the extent 
that the directly associated pattern overlaps with the previous patterns – where this 
usually means that if your window is of length 10, then the strength of the reward at r(i) 
will be attributed 100% to the pattern at r(i) and (100-10j)% for each pattern at r(i+j) 
thereafter (until j=11).  

The second important matter that we can look to reinforcement learning for 
support is the issue of deciding on an action.  In reinforcement learning, the issue of 
decision making revolves around striking a balance between exploitation and exploration. 
In exploitation, one uses what they’ve learned – so in our case, we would exploit if we 
decided on an action according to the pattern which was recognized with the most overall 
strength.  In exploration, on the other hand, one tries new things to see what might come 
of it – this is the factor of uncertainty that I’ve mentioned already, the uncertainty as to 
whether there may be something better.  The most appealing resolution to this matter 
from my perspective is a lottery over the patterns recognized, weighted according to the 
strength of the recognitions, but with a distinct random participant, which has its own 
weight – of course, determining this weight is not so simple, but I tend to think of it as a 
function of the density of patterns around the index to the DOC…  So we turn now to the 
questions surrounding this index.

The first issue is exactly how close a stored pattern needs to be to the index to be 
considered.  I take it that the range of DOC has a lot to say about the scope of 
consideration; but I can say that I expect, more or less, a bell shaped curve applied over 
the index to DOC.  From here, we can answer the second question, of how to grade 
proximity to the index, and say that one can determine how to grade the notion of 
proximity among the patterns to the DOC according to the value of that Bell shaped 
curve at the patterns location on the DOC.

I should say that there does not appear to be any help supplied by reinforcement 
learning on the topic of proximity to the DOC – in fact, the whole idea of a context is 
largely irrelevant within the framework of Markov Decision Processes27.  So similarly, it 
will have little to say on our next set of questions, regarding pattern matching: Exactly 
26 In reinforcement learning, this process is an effective way of speeding up the learning process; but in our 
case it is a necessary component for learning the value (relevance) since we do not store the value for every 
state in advance (in some form).
27 Where what came before is probabilistically irrelevant to what happens next.



how similar a stored pattern needs to be to the current experience to be applied, and how 
should we grade the notion of similarity among the patterns – thereby grading the value 
of the recognition?  Of course, what this does, in large part, is ask for an understanding of 
similarity – an understanding that we are not in a position to give.  We therefore assume 
that there is a property of similarity, which comes in degrees, and figures prominently in 
recognition – but relent in trying to explain its mechanics, which as I have argued 
previously, fall outside of the computational realm.

Finally, there remains the issue of how it is that general patterns are abstracted 
from the particular patterns our agent experiences.  Of course, again, the patterns that are 
abstracted from those experienced are abstracted based upon the similar parts of the 
experienced patterns.  (Again the notion of similarity has a crucial role to play in 
understanding the mechanics of our agent.)  These abstracted patterns contain among 
them the “null” values mentioned earlier, but are stored like any other pattern along the 
DOC.

Final Remarks
These are the core issues in pattern recognition agency as it stands today.  In work to 
come, I will present the discrete pinhole pattern recognition agent in a simplified 
interactive model, through an applet that will be available at this site.  This 
demonstration, naturally, is for the purposes of understanding pattern recognition agency. 
But as many of the issues at the end of the prior section indicate – we are a long way 
from implementing this agent on computational hardware.  In fact, the concluding issues 
of the last section may tend to indicate that my urging the reader in previous works to 
free themselves from the bounds of the computational perspective was not simply a 
matter of opening the readers mind for the sake of understanding.  It may seem to 
indicate that in fact, we must understand pattern recognition agency independent from the 
computational perspective.

I am not inclined at this moment to give up on the computational perspective, of 
course – but I am inclined to view attempts to replicate the true pattern recognition agent 
within this perspective as only possibly approximating this agent.  I am inclined to say 
that pattern matching, which is the core of any pattern recognition agent, can only be 
efficiently carried out by non-computational processes, and that is not to say it is never 
efficiently  carried  out  at  all…  But  there  will  be  more  to  come  on the  relationship 
between tractability and pattern recognition in our June edition.
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